ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (53)
  • Volcano monitoring  (24)
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (15)
  • Mt. Etna  (8)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (7)
  • Vesuvio  (7)
  • 2015-2019  (53)
Collection
  • Articles  (53)
Source
Years
Year
  • 1
    Publication Date: 2021-03-01
    Description: Augmented Reality (AR) is a new way to interact with the world around us by means of the alteration of reality perceived through specific sensors. Virtual elements are indeed overlapped to our visual perception using a video camera or special glasses. In the light of this experience, the AR user will see real images mixed with virtual objects and movies, hear sounds, perceive tactile sensations and, in the next future, have olfactory experiences. We exploit AR features for dissemination purposes in the field of non-structural damage caused by earthquakes as part of our activities within the European project KnowRISK (Know your city, Reduce selSmic risK through non-structural elements). In this presentation, we propose an AR application that allows the user on the field to access information based on a geo database. Accordingly, the application can work in outdoor guided tours as well as field surveys in the form of a virtual assistant. The application requires a tablet and is developed using the WikitudeTM framework, provided by Wikitude GmbH (www.wikitude.com), under Android OS version 4+. From a technical point of view, it is based on the Wikitude Software Development Kit (SDK), which represents an all-in-one AR solution including image recognition and tracking, video overlay, and location based AR service. We developed our prototype application as field trip experience of the town of Noto (Italy), destroyed by an earthquake in 1693. In the middle Ages, the old town of Noto was an important and rich stronghold chosen by Arabs as chief town of one of the three districts (Val di Noto) in which Sicily was divided. Houses, churches, convents and monasteries in Noto were totally destroyed by earthquakes with intensity I=X-XI MCS between 1542 and 1693. The victims were 3,000 out of a total population of 12,000 inhabitants. Our AR application provides historical information on Noto along images and seismic data. Building-up similar tools can be useful not only for laypersons, but also for professionals in support to their field surveys.
    Description: Published
    Description: INGV - Osservatorio Etneo, Catania Italy
    Description: 7IT. Educazione e divulgazione scientifica
    Description: open
    Keywords: Seismic, Non structural elements ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-11
    Description: The Disruption Index is used here for the assessment of urban disruption in the Mt. Etna area after a natural disaster. The first element of the procedure is the definition of the seismic input, which is based on information about the historical seismicity and seismogenic faults. The second element is the computation of the seismic impact on the building stock and infrastructure in the region considered. Information on urban-scale vulnerability was collected and a geographic information system was used to organize the data relating to buildings and network systems (e. g., typologies, schools, strategic structures, lifelines). The central idea underlying the definition of the Disruption Index is the identification and evaluation of the impacts on a target community, considering the physical elements that contribute most to the severe disruption. The results of this study are therefore very useful for earthquake preparedness planning and for the development of strategies to minimize the risks from earthquakes. This study is a product of the European “Urban Disaster Prevention Strategies using Macroseismic Fields and Fault Sources” project (UPStrat-MAFA European project 2013).
    Description: Published
    Description: Torino, Italy
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Disruption Index, Mt. Etna Volcano ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-11
    Description: Mt Etna region (Sicily, Italy) is one of the test areas studied in the European Project “Urban disaster Prevention Strategies using MAcroseismic fields and FAult sources” ( UPStrat-MAFA) to which the methodology of Disruption Index (hereafter DI), recently developed to evaluate the dysfunction of urban systems caused by earthquakes (Ferreira et al., 2014), has been applied on a trial basis.
    Description: Published
    Description: Istanbul, Turkey
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Seismic Risk ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-01
    Description: Natural disasters, such as earthquakes and volcanic eruptions, have strong effects on the socioeconomic well-being of countries and their people. The consequences of these events can lead to complex cascades of related incidents, and in more serious contexts they can threaten our basic survivability. The problem of the seismic risk is a well-known issue at Etna due to the high-intensities volcano-tectonic earthquakes that frequently damage the very populated flanks of the volcano. In the framework of the european UPStrat-MAFA project, seismic hazard was performed following the probabilistic approach (PSHA) based on historical macroseismic data, by using the SASHA code [D’Amico and Albarello, 2008]. This approach uses intensity site observations to compute the seismic history for each investigated locality; the results, are expressed in terms of maximum intensity expected in a given exposure time, for exceedance probability thresholds. The seismic site histories were reconstructed from the database of macroseismic observation related to the historical catalogue of Mt. Etna from 1832 to 2013 [CMTE, 2014], implemented by “spot” observations as far back as 1600 [Azzaro and Castelli, 2014]. To improve the completeness of the site seismic histories, the dataset of the observed intensities was integrated with ‘virtual’ values, calculated according to attenuation laws. The attenuation model applied is based on Bayesian statistics performed on the Etna dataset [Rotondi et al., 2013], and provides the probabilistic distribution of the intensity at a given site. The hazard maps, calculated using a grid spaced 1 km, shows that for short exposure times (10 and 30 years, Figure 1a), volcano-tectonic earthquakes are the main source of shaking for the area. In particular localities in the eastern flank of the volcano have very high probabilities to suffer damage at least of VII degree in the next 30 years. Moreover, the de-aggregation analysis between magnitude vs seismic source demonstrates that S. Tecla fault (STF in Figure 1b) is one of the structures that mostly contribute to the hazard.
    Description: Published
    Description: Nicolosi, Italy
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-15
    Description: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Description: Published
    Description: 1181–1199
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-23
    Description: The Disruption Index is used here for the assessment of urban disruption in the Mt. Etna area after a natural disaster. The first element of the procedure is the definition of the seismic input, which is based on information about the historical seismicity and seismogenic faults. The second element is the computation of the seismic impact on the building stock and infrastructure in the region considered. Information on urban-scale vulnerability was collected and a geographic information system was used to organize the data relating to buildings and network systems (e.g., typologies, schools, strategic structures, lifelines). The central idea underlying the definition of the Disruption Index is the identification and evaluation of the impacts on a target community, considering the physical elements that contribute most to the severe disruption. The results of this study are therefore very useful for earthquake preparedness planning and for the development of strategies to minimize the risks from earthquakes. This study is a product of the European “Urban Disaster Prevention Strategies using Macroseismic Fields and Fault Sources” project (UPStrat-MAFA European project 2013).
    Description: Published
    Description: Torino
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Seismic impact ; Disruption index ; Urban system ; Risk measures ; Mt. Etna area (Italy) ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: In the framework of the UPStrat-MAFA project, a seismic hazard assessment has been undertaken in the volcanic region of Mt. Etna as a first step in studies aimed at evaluating the risk on an urban scale. The analysis has been carried out with the SASHA code which uses macroseismic data in order to calculate, starting from the site seismic history, the maximum intensity value expected in a given site with a probability of exceedance of 10 % (Iref), for a fixed exposure time. Depending on the aims of the project, hazard is estimated for local volcano-tectonic seismicity and short exposure times (10 and 30 years), without taking into account the contribution of ‘‘regional’’ events characterized by much longer recurrence times. Results from tasks A, B and D of the project have produced an updated macroseismic dataset, better performing attenuation models and new tools for SASHA, respectively. The maps obtained indicate that the eastern flank of Etna, the most urbanized sector of the volcano, is characterized by a high level of hazard with Iref values up to degree VIII EMS, and even IX EMS locally. The disaggregated data analysis allows recognizing the ‘‘design earthquake’’ and the seismogenic fault which most contribute to the hazard at a site-scale. The latter analysis is the starting point to select the scenario earthquake to be used in the analyses of tasks C and F of the project dealing with, respectively, synthetic ground motion simulations and the evaluation of the Disruption Index.
    Description: Published
    Description: 1813–1825
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano-tectonic earthquakes ; Macroseismic intensity ; Seismic history ; Attenuation models ; Exceedance probability ; Seismic hazard ; Mt. Etna ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks
    Description: Unpublished
    Description: Vienna
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: restricted
    Keywords: natural hazards, risk, education, art ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Earthquakes are, by far, the most relevant source of hazard for the densely urbanised areas of Mt. Etna region. Local communities living in the eastern and southern flanks of the volcano continuously suffer social and economic losses due to the very high occurrence of damaging earthquakes, which produce intensities up to degree X EMS despite of low energy (M 〈 5.0). Seismic hazard in the Mt. Etna region is controlled by two distinct types of earthquakes, namely regional and local events, which have different magnitudes and frequencies (Azzaro et al., 2008). In particular, hazard deriving from local volcano-tectonic events can be relevant if short exposure times (30 years) are considered, since the reference intensity (Iref) calculated at the exceeding probability of 10% reaches, in some localities, the IX degree (Azzaro et al., 2008; Azzaro et al., 2013). In the framework of the UPStrat-MAFA project, the seismic hazard was performed following the probabilistic approach (PSHA) based on historical macroseismic data, by using the SASHA code (D'Amico and Albarello, 2008; Albarello and D’Amico, 2013) which has been implemented in the project itself. This approach uses intensity site observations to compute the seismic history for each investigated locality; results are obtained in terms of maximum expected intensity with an exceedance probability ≥ 10% for a given exposure time. In this study we produced PSHA maps referred to local volcano-tectonic seismicity.
    Description: Published
    Description: Istanbul, Turkey
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Seismic hazard ; Mt. Etna volcano ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We probe the feasibility of integrating GPS and Synthetic Aperture Radar deformation rates within the seismic hazard models of the central Apennines (Italy), exploiting data from over 100 GPS stations and the ~20- year long ERS and ENVISAT SAR image archive. We then use a kinematic finite element model to derive the long-term strain rates, as well as earthquake recurrence relations. In turn these are input to state-of-the-art probabilistic seismic hazard models, the output of which is validated statistically using data from the Italian national accelerometric and macroseismic intensity databases.
    Description: Published
    Description: 23-27
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: N/A or not JCR
    Description: restricted
    Keywords: Seismic Hazard ; InSAR ; Central apennines ; Ground deformation ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...