ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (20)
  • Nature Publishing Group (NPG)  (20)
  • American Geophysical Union
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • National Academy of Sciences
  • 2015-2019  (20)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-05
    Description: Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adhikari, Avishek -- Lerner, Talia N -- Finkelstein, Joel -- Pak, Sally -- Jennings, Joshua H -- Davidson, Thomas J -- Ferenczi, Emily -- Gunaydin, Lisa A -- Mirzabekov, Julie J -- Ye, Li -- Kim, Sung-Yon -- Lei, Anna -- Deisseroth, Karl -- 1F32MH105053-01/MH/NIMH NIH HHS/ -- K99 MH106649/MH/NIMH NIH HHS/ -- K99MH106649/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):179-85. doi: 10.1038/nature15698. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; CNC Program, Stanford University, Stanford, California 94304, USA. ; Neurosciences Program, Stanford University, Stanford, California 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536109" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/*physiology ; Animals ; Anxiety/*physiopathology/psychology ; Extinction, Psychological/physiology ; Fear/*physiology/psychology ; Female ; Freezing Reaction, Cataleptic/physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/*physiology ; Prefrontal Cortex/cytology/physiology ; Stress, Psychological/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-10
    Description: At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Xi-Ping -- Karpiak, Joel -- Kroeze, Wesley K -- Zhu, Hu -- Chen, Xin -- Moy, Sheryl S -- Saddoris, Kara A -- Nikolova, Viktoriya D -- Farrell, Martilias S -- Wang, Sheng -- Mangano, Thomas J -- Deshpande, Deepak A -- Jiang, Alice -- Penn, Raymond B -- Jin, Jian -- Koller, Beverly H -- Kenakin, Terry -- Shoichet, Brian K -- Roth, Bryan L -- GM59957/GM/NIGMS NIH HHS/ -- GM71896/GM/NIGMS NIH HHS/ -- P01 HL114471/HL/NHLBI NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- U01 MH104974/MH/NIMH NIH HHS/ -- U19MH082441/MH/NIMH NIH HHS/ -- U54 HD079124/HD/NICHD NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):477-83. doi: 10.1038/nature15699. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA. ; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA. ; Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA. ; Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA. ; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA. ; Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA. ; Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA. ; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550826" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Allosteric Site ; Animals ; Anti-Anxiety Agents/analysis/chemistry/metabolism/pharmacology ; Benzyl Alcohols/analysis/*chemistry/metabolism/*pharmacology ; Conditioning, Classical ; *Drug Discovery ; Fear ; Female ; HEK293 Cells ; Humans ; Ligands ; Lorazepam/analysis/*chemistry/metabolism/*pharmacology ; Male ; Memory/drug effects ; Mice ; Mice, Knockout ; Models, Molecular ; Receptors, G-Protein-Coupled/agonists/antagonists & ; inhibitors/chemistry/deficiency/*metabolism ; Signal Transduction/drug effects ; Triazines/analysis/*chemistry/metabolism/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Florence, T J -- Reiser, Michael B -- England -- Nature. 2015 Mar 19;519(7543):296-7. doi: 10.1038/nature14209. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739498" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/*physiology ; Drosophila melanogaster/*physiology ; Female ; *Neural Pathways ; *Temperature ; Thermoreceptors/*physiology ; Thermosensing/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-27
    Description: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waddell, Nicola -- Pajic, Marina -- Patch, Ann-Marie -- Chang, David K -- Kassahn, Karin S -- Bailey, Peter -- Johns, Amber L -- Miller, David -- Nones, Katia -- Quek, Kelly -- Quinn, Michael C J -- Robertson, Alan J -- Fadlullah, Muhammad Z H -- Bruxner, Tim J C -- Christ, Angelika N -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourse, Craig -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Wilson, Peter J -- Markham, Emma -- Cloonan, Nicole -- Anderson, Matthew J -- Fink, J Lynn -- Holmes, Oliver -- Kazakoff, Stephen H -- Leonard, Conrad -- Newell, Felicity -- Poudel, Barsha -- Song, Sarah -- Taylor, Darrin -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Lee, Hong C -- Jones, Marc D -- Nagrial, Adnan M -- Humphris, Jeremy -- Chantrill, Lorraine A -- Chin, Venessa -- Steinmann, Angela M -- Mawson, Amanda -- Humphrey, Emily S -- Colvin, Emily K -- Chou, Angela -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Pettitt, Jessica A -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Jamieson, Nigel B -- Graham, Janet S -- Niclou, Simone P -- Bjerkvig, Rolf -- Grutzmann, Robert -- Aust, Daniela -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Falconi, Massimo -- Zamboni, Giuseppe -- Tortora, Giampaolo -- Tempero, Margaret A -- Australian Pancreatic Cancer Genome Initiative -- Gill, Anthony J -- Eshleman, James R -- Pilarsky, Christian -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Pearson, John V -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Wellcome Trust/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- C596/A18076/Cancer Research UK/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA62924/CA/NCI NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):495-501. doi: 10.1038/nature14169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. ; 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Norlux Neuro-Oncology Laboratory, CRP-Sante Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. ; Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. ; Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. ; Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719666" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics ; Animals ; Carcinoma, Pancreatic Ductal/drug therapy/genetics ; *DNA Mutational Analysis ; DNA Repair/genetics ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Markers/genetics ; Genome, Human/*genetics ; Genomic Instability/genetics ; *Genomics ; Genotype ; Humans ; Mice ; Mutation/*genetics ; Pancreatic Neoplasms/classification/drug therapy/*genetics ; Platinum/pharmacology ; Point Mutation/genetics ; Poly(ADP-ribose) Polymerase Inhibitors ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-17
    Description: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Dheeraj S -- Arons, Autumn -- Mitchell, Teryn I -- Pignatelli, Michele -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 24;531(7595):508-12. doi: 10.1038/nature17172. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982728" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/*pathology/*physiopathology ; Amnesia/pathology/physiopathology ; Amyloid beta-Protein Precursor/genetics ; Animals ; Dendritic Spines/pathology/physiology ; Dentate Gyrus/*cytology/pathology/*physiology/physiopathology ; *Disease Models, Animal ; Early Medical Intervention ; Humans ; Long-Term Potentiation ; Male ; Memory, Episodic ; Memory, Long-Term/*physiology ; Mice ; Mice, Transgenic ; Optogenetics ; Plaque, Amyloid ; Presenilin-1/genetics ; Synapses/metabolism ; Transgenes/genetics ; tau Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liang, T Jake -- England -- Nature. 2016 Mar 17;531(7594):313-4. doi: 10.1038/531313a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1800, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26983537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/*metabolism ; Hepatitis B virus/*physiology ; *Host Specificity ; Humans ; Male ; Trans-Activators/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-31
    Description: Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Mark A -- Burda, Joshua E -- Ren, Yilong -- Ao, Yan -- O'Shea, Timothy M -- Kawaguchi, Riki -- Coppola, Giovanni -- Khakh, Baljit S -- Deming, Timothy J -- Sofroniew, Michael V -- MH099559A/MH/NIMH NIH HHS/ -- MH104069/MH/NIMH NIH HHS/ -- NS057624/NS/NINDS NIH HHS/ -- NS060677/NS/NINDS NIH HHS/ -- NS084030/NS/NINDS NIH HHS/ -- P30 NS062691/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Apr 14;532(7598):195-200. doi: 10.1038/nature17623. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1763, USA. ; Departments of Psychiatry and Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1761, USA. ; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA. ; Departments of Bioengineering, Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1600, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*pathology ; Axons/*physiology ; Central Nervous System/cytology/*pathology/*physiology ; Chondroitin Sulfate Proteoglycans/biosynthesis ; Cicatrix/*pathology/prevention & control ; Female ; Genomics ; Mice ; *Models, Biological ; *Nerve Regeneration ; Reproducibility of Results ; Spinal Cord Injuries/genetics/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-26
    Description: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-beta, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailey, Peter -- Chang, David K -- Nones, Katia -- Johns, Amber L -- Patch, Ann-Marie -- Gingras, Marie-Claude -- Miller, David K -- Christ, Angelika N -- Bruxner, Tim J C -- Quinn, Michael C -- Nourse, Craig -- Murtaugh, L Charles -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Fink, Lynn -- Holmes, Oliver -- Chin, Venessa -- Anderson, Matthew J -- Kazakoff, Stephen -- Leonard, Conrad -- Newell, Felicity -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wilson, Peter J -- Cloonan, Nicole -- Kassahn, Karin S -- Taylor, Darrin -- Quek, Kelly -- Robertson, Alan -- Pantano, Lorena -- Mincarelli, Laura -- Sanchez, Luis N -- Evers, Lisa -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chantrill, Lorraine A -- Mawson, Amanda -- Humphris, Jeremy -- Chou, Angela -- Pajic, Marina -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Merrett, Neil D -- Toon, Christopher W -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Moran-Jones, Kim -- Jamieson, Nigel B -- Graham, Janet S -- Duthie, Fraser -- Oien, Karin -- Hair, Jane -- Grutzmann, Robert -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Rusev, Borislav -- Capelli, Paola -- Salvia, Roberto -- Tortora, Giampaolo -- Mukhopadhyay, Debabrata -- Petersen, Gloria M -- Australian Pancreatic Cancer Genome Initiative -- Munzy, Donna M -- Fisher, William E -- Karim, Saadia A -- Eshleman, James R -- Hruban, Ralph H -- Pilarsky, Christian -- Morton, Jennifer P -- Sansom, Owen J -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Bailey, Ulla-Maja Hagbo -- Hofmann, Oliver -- Sutherland, Robert L -- Wheeler, David A -- Gill, Anthony J -- Gibbs, Richard A -- Pearson, John V -- Waddell, Nicola -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Z/14/Z/Wellcome Trust/United Kingdom -- A12481/Cancer Research UK/United Kingdom -- A18076/Cancer Research UK/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):47-52. doi: 10.1038/nature16965. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. ; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. ; QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. ; Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. ; Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. ; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. ; Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. ; Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. ; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. ; School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. ; University of Sydney, Sydney, New South Wales 2006, Australia. ; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. ; School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. ; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. ; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. ; GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. ; Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Mayo Clinic, Rochester, Minnesota 55905, USA. ; Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. ; Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. ; University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Carcinoma, Pancreatic ; Ductal/classification/genetics/immunology/metabolism/pathology ; Cell Line, Tumor ; DNA Methylation ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; *Genomics ; Hepatocyte Nuclear Factor 3-beta/genetics ; Hepatocyte Nuclear Factor 3-gamma/genetics ; Histone Demethylases/genetics ; Homeodomain Proteins/genetics ; Humans ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Pancreatic Neoplasms/*classification/*genetics/immunology/metabolism/pathology ; Prognosis ; Receptors, Cytoplasmic and Nuclear/genetics ; Survival Analysis ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic ; Transcriptome ; Tumor Suppressor Protein p53/genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-02
    Description: One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506234/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506234/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louveau, Antoine -- Smirnov, Igor -- Keyes, Timothy J -- Eccles, Jacob D -- Rouhani, Sherin J -- Peske, J David -- Derecki, Noel C -- Castle, David -- Mandell, James W -- Lee, Kevin S -- Harris, Tajie H -- Kipnis, Jonathan -- P30 CA044579/CA/NCI NIH HHS/ -- R01 AG034113/AG/NIA NIH HHS/ -- R01 NS061973/NS/NINDS NIH HHS/ -- R01AG034113/AG/NIA NIH HHS/ -- R01NS061973/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Jul 16;523(7560):337-41. doi: 10.1038/nature14432. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Medicine (Division of Allergy), School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Pathology (Neuropathology), School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Neurosurgery, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/*anatomy & histology/cytology/*immunology ; Cranial Sinuses/anatomy & histology ; Female ; Humans ; Immune Tolerance/immunology ; Immunologic Surveillance/immunology ; Lymphatic Vessels/*anatomy & histology/cytology/*immunology ; Male ; Meninges/anatomy & histology/cytology/immunology ; Mice, Inbred C57BL ; T-Lymphocytes/cytology/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...