ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (38)
  • Male  (38)
  • ASTROPHYSICS
  • STRUCTURAL MECHANICS
  • American Association for the Advancement of Science (AAAS)  (76)
  • Baltimore, MD
  • 2015-2019  (76)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-02-24
    Description: Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437632/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437632/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cirulli, Elizabeth T -- Lasseigne, Brittany N -- Petrovski, Slave -- Sapp, Peter C -- Dion, Patrick A -- Leblond, Claire S -- Couthouis, Julien -- Lu, Yi-Fan -- Wang, Quanli -- Krueger, Brian J -- Ren, Zhong -- Keebler, Jonathan -- Han, Yujun -- Levy, Shawn E -- Boone, Braden E -- Wimbish, Jack R -- Waite, Lindsay L -- Jones, Angela L -- Carulli, John P -- Day-Williams, Aaron G -- Staropoli, John F -- Xin, Winnie W -- Chesi, Alessandra -- Raphael, Alya R -- McKenna-Yasek, Diane -- Cady, Janet -- Vianney de Jong, J M B -- Kenna, Kevin P -- Smith, Bradley N -- Topp, Simon -- Miller, Jack -- Gkazi, Athina -- FALS Sequencing Consortium -- Al-Chalabi, Ammar -- van den Berg, Leonard H -- Veldink, Jan -- Silani, Vincenzo -- Ticozzi, Nicola -- Shaw, Christopher E -- Baloh, Robert H -- Appel, Stanley -- Simpson, Ericka -- Lagier-Tourenne, Clotilde -- Pulst, Stefan M -- Gibson, Summer -- Trojanowski, John Q -- Elman, Lauren -- McCluskey, Leo -- Grossman, Murray -- Shneider, Neil A -- Chung, Wendy K -- Ravits, John M -- Glass, Jonathan D -- Sims, Katherine B -- Van Deerlin, Vivianna M -- Maniatis, Tom -- Hayes, Sebastian D -- Ordureau, Alban -- Swarup, Sharan -- Landers, John -- Baas, Frank -- Allen, Andrew S -- Bedlack, Richard S -- Harper, J Wade -- Gitler, Aaron D -- Rouleau, Guy A -- Brown, Robert -- Harms, Matthew B -- Cooper, Gregory M -- Harris, Tim -- Myers, Richard M -- Goldstein, David B -- 089701/Wellcome Trust/United Kingdom -- K08 NS075094/NS/NINDS NIH HHS/ -- P01 AG017586/AG/NIA NIH HHS/ -- P01 AG032953/AG/NIA NIH HHS/ -- P50 AG025688/AG/NIA NIH HHS/ -- R37 NS033123/NS/NINDS NIH HHS/ -- R37 NS083524/NS/NINDS NIH HHS/ -- T32 GM007754/GM/NIGMS NIH HHS/ -- TL1 TR001066/TR/NCATS NIH HHS/ -- UL1 TR001067/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1436-41. doi: 10.1126/science.aaa3650. Epub 2015 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA. ; Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA. ; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA. ; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Duke University School of Medicine, Durham, NC 27708, USA. ; Biogen Idec, Cambridge, MA 02142, USA. ; Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands. ; Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland. ; Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK. ; Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands. ; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Universita degli Studi di Milano, Milan 20122, Italy. ; Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. ; Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA. ; Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA. ; Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA. ; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Neurology, Emory University, Atlanta, GA 30322, USA. ; Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA. ; Biogen Idec, Cambridge, MA 02142, USA. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA. ; Duke ALS Clinic and Durham VA Medical Center, Durham, NC 27708, USA. ; Biogen Idec, Cambridge, MA 02142, USA. tim.harris@biogenidec.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700176" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Amyotrophic Lateral Sclerosis/*genetics ; Autophagy/*genetics ; Exome/*genetics ; Female ; Genes ; Genetic Association Studies ; *Genetic Predisposition to Disease ; Humans ; Male ; Middle Aged ; Protein Binding ; Protein-Serine-Threonine Kinases/*genetics/metabolism ; Risk ; Sequence Analysis, DNA ; Transcription Factor TFIIIA/genetics/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-05
    Description: Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-05
    Description: Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narasimhan, Vagheesh M -- Hunt, Karen A -- Mason, Dan -- Baker, Christopher L -- Karczewski, Konrad J -- Barnes, Michael R -- Barnett, Anthony H -- Bates, Chris -- Bellary, Srikanth -- Bockett, Nicholas A -- Giorda, Kristina -- Griffiths, Christopher J -- Hemingway, Harry -- Jia, Zhilong -- Kelly, M Ann -- Khawaja, Hajrah A -- Lek, Monkol -- McCarthy, Shane -- McEachan, Rosie -- O'Donnell-Luria, Anne -- Paigen, Kenneth -- Parisinos, Constantinos A -- Sheridan, Eamonn -- Southgate, Laura -- Tee, Louise -- Thomas, Mark -- Xue, Yali -- Schnall-Levin, Michael -- Petkov, Petko M -- Tyler-Smith, Chris -- Maher, Eamonn R -- Trembath, Richard C -- MacArthur, Daniel G -- Wright, John -- Durbin, Richard -- van Heel, David A -- GM 099640/GM/NIGMS NIH HHS/ -- MR/M009017/1/Medical Research Council/United Kingdom -- R01 GM104371/GM/NIGMS NIH HHS/ -- R01GM104371/GM/NIGMS NIH HHS/ -- WT098051/Wellcome Trust/United Kingdom -- WT099769/Wellcome Trust/United Kingdom -- WT101597/Wellcome Trust/United Kingdom -- WT102627/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Arthritis Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- Chief Scientist Office/United Kingdom -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):474-7. doi: 10.1126/science.aac8624. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. ; Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK. ; Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. ; Diabetes and Endocrine Centre, Heart of England NHS Foundation Trust and University of Birmingham, Birmingham B9 5SS, UK. ; TPP, Mill House, Troy Road, Leeds LS18 5TN, UK. ; Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK. ; 10X Genomics, 7068 Koll Center Parkway, Suite 415, Pleasanton, CA 94566, USA. ; Farr Institute of Health Informatics Research, London NW1 2DA, UK. Institute of Health Informatics, University College London, London NW1 2DA, UK. ; School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK. ; Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Box 238, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. rd@sanger.ac.uk d.vanheel@qmul.ac.uk. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. rd@sanger.ac.uk d.vanheel@qmul.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940866" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; *Consanguinity ; DNA Mutational Analysis ; Drug Prescriptions ; Exome/genetics ; Female ; Fertility ; Gene Knockout Techniques ; Genes, Lethal ; Genetic Loci ; Genome, Human ; Great Britain ; *Health ; Histone-Lysine N-Methyltransferase/*genetics ; Homologous Recombination ; Homozygote ; Humans ; Male ; Mothers ; Pakistan/ethnology ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-28
    Description: The water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoC at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-03
    Description: The irradiation of gold nanorod colloids with a femtosecond laser can be tuned to induce controlled nanorod reshaping, yielding colloids with exceptionally narrow localized surface plasmon resonance bands. The process relies on a regime characterized by a gentle multishot reduction of the aspect ratio, whereas the rod shape and volume are barely affected. Successful reshaping can only occur within a narrow window of the heat dissipation rate: Low cooling rates lead to drastic morphological changes, and fast cooling has nearly no effect. Hence, a delicate balance must be achieved between irradiation fluence and surface density of the surfactant on the nanorods. This perfection process is appealing because it provides a simple, fast, reproducible, and scalable route toward gold nanorods with an optical response of exceptional quality, near the theoretical limit.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-27
    Description: Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the 〈111〉 (preferred), 〈110〉, or 〈211〉 directions as faceted, single-crystalline nanowires. These growth directions can change at kinks with no observable crystallographic defect. Furthermore, we reveal distinct SEI nanostructures formed in different electrolytes.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-27
    Description: Vinyl carbocations have been the subject of extensive experimental and theoretical studies over the past five decades. Despite this long history in chemistry, the utility of vinyl cations in chemical synthesis has been limited, with most reactivity studies focusing on solvolysis reactions or intramolecular processes. Here we report synthetic and mechanistic studies of vinyl cations generated through silylium–weakly coordinating anion catalysis. We find that these reactive intermediates undergo mild intermolecular carbon-carbon bond–forming reactions, including carbon-hydrogen (C–H) insertion into unactivated sp 3 C–H bonds and reductive Friedel-Crafts reactions with arenes. Moreover, we conducted computational studies of these alkane C–H functionalization reactions and discovered that they proceed through nonclassical, ambimodal transition structures. This reaction manifold provides a framework for the catalytic functionalization of hydrocarbons using simple ketone derivatives.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-22
    Description: It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-13
    Description: During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richiardi, Jonas -- Altmann, Andre -- Milazzo, Anna-Clare -- Chang, Catie -- Chakravarty, M Mallar -- Banaschewski, Tobias -- Barker, Gareth J -- Bokde, Arun L W -- Bromberg, Uli -- Buchel, Christian -- Conrod, Patricia -- Fauth-Buhler, Mira -- Flor, Herta -- Frouin, Vincent -- Gallinat, Jurgen -- Garavan, Hugh -- Gowland, Penny -- Heinz, Andreas -- Lemaitre, Herve -- Mann, Karl F -- Martinot, Jean-Luc -- Nees, Frauke -- Paus, Tomas -- Pausova, Zdenka -- Rietschel, Marcella -- Robbins, Trevor W -- Smolka, Michael N -- Spanagel, Rainer -- Strohle, Andreas -- Schumann, Gunter -- Hawrylycz, Mike -- Poline, Jean-Baptiste -- Greicius, Michael D -- IMAGEN consortium -- 93558/Medical Research Council/United Kingdom -- R01 MH085772-01A1/MH/NIMH NIH HHS/ -- R01NS073498/NS/NINDS NIH HHS/ -- U54 EB020403/EB/NIBIB NIH HHS/ -- Department of Health/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1241-4. doi: 10.1126/science.1255905. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. Laboratory of Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland. jonas.richiardi@unige.ch greicius@stanford.edu. ; Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. ; The War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA. Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. ; Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA. ; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada. Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Canada. ; Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. ; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. ; Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. ; Universitaetsklinikum Hamburg Eppendorf, Hamburg, Germany. ; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. Department of Psychiatry, Universite de Montreal, Centre Hospitalier Universitaire (CHU) Ste Justine Hospital, Montreal, Canada. ; Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. ; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. ; Neurospin, Commissariat a l'Energie Atomique et aux Energies Alternatives, Paris, France. ; Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite-Universitatsmedizin Berlin, Berlin, Germany. ; Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA. ; School of Physics and Astronomy, University of Nottingham, Nottingham, UK. ; Institut National de la Sante et de la Recherche Medicale, INSERM Unit 1000 "Neuroimaging and Psychiatry," University Paris Sud, Orsay, France. INSERM Unit 1000 at Maison de Solenn, Assistance Publique Hopitaux de Paris (APHP), Cochin Hospital, University Paris Descartes, Sorbonne Paris Cite, Paris, France. ; Rotman Research Institute, University of Toronto, Toronto, Canada. School of Psychology, University of Nottingham, Nottingham, UK. ; The Hospital for Sick Children, University of Toronto, Toronto, Canada. ; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. ; Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK. ; Department of Psychiatry and Psychotherapy, and Neuroimaging Center, Technische Universitat Dresden, Dresden, Germany. ; Department of Psychopharmacology, Central Institute of Mental Health, Faculty of Clinical Medicine Mannheim, Mannheim, Germany. ; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. Medical Research Council (MRC) Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK. ; Allen Institute for Brain Science, Seattle, WA, USA. ; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA. ; Functional Imaging in Neuropsychiatric Disorders Laboratory, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. jonas.richiardi@unige.ch greicius@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068849" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Brain/metabolism/*physiology ; Female ; Gene Expression ; Humans ; Ion Channels/*genetics ; Magnetic Resonance Imaging ; Male ; Mice ; Nerve Net/metabolism/*physiology ; Neural Pathways/metabolism/physiology ; Polymorphism, Genetic ; Rest/*physiology ; Synapses/metabolism/physiology ; *Transcriptome ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-19
    Description: Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, David T -- Zheng, Yu -- Wittner, Ben S -- Lee, Richard J -- Zhu, Huili -- Broderick, Katherine T -- Desai, Rushil -- Fox, Douglas B -- Brannigan, Brian W -- Trautwein, Julie -- Arora, Kshitij S -- Desai, Niyati -- Dahl, Douglas M -- Sequist, Lecia V -- Smith, Matthew R -- Kapur, Ravi -- Wu, Chin-Lee -- Shioda, Toshi -- Ramaswamy, Sridhar -- Ting, David T -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 2R01CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1351-6. doi: 10.1126/science.aab0917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383955" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/pharmacology/*therapeutic use ; Animals ; Cell Line, Tumor ; Drug Resistance, Neoplasm/*genetics ; Humans ; Male ; Mice ; Neoplastic Cells, Circulating/drug effects/*metabolism ; Phenylthiohydantoin/*analogs & derivatives/pharmacology/therapeutic use ; Prostate/drug effects/metabolism/pathology ; Prostatic Neoplasms/*drug therapy/*pathology ; Proto-Oncogene Proteins/genetics/metabolism ; RNA Splicing ; Receptors, Androgen/*genetics ; Sequence Analysis, RNA/methods ; Signal Transduction ; Single-Cell Analysis/methods ; Transcriptome ; Wnt Proteins/genetics/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...