ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (409)
  • Molecular Sequence Data  (329)
  • ASTROPHYSICS
  • Alpha-scintillation; DEPTH, sediment/rock; Description; Dredge; DRG; Event label; Identification; Kara Sea; Lake_Uksh_K; Lake Uksh, Karelia, Russia; Mass; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Radium; Sedov (1909); Sedov-1934; SEDOV34_74; Width
  • Inorganic Chemistry
  • 2015-2019  (57)
  • 1995-1999  (698)
  • 1940-1944  (74)
  • 1935-1939  (95)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2016-03-26
    Description: Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faria, Nuno Rodrigues -- Azevedo, Raimunda do Socorro da Silva -- Kraemer, Moritz U G -- Souza, Renato -- Cunha, Mariana Sequetin -- Hill, Sarah C -- Theze, Julien -- Bonsall, Michael B -- Bowden, Thomas A -- Rissanen, Ilona -- Rocco, Iray Maria -- Nogueira, Juliana Silva -- Maeda, Adriana Yurika -- Vasami, Fernanda Giseli da Silva -- Macedo, Fernando Luiz de Lima -- Suzuki, Akemi -- Rodrigues, Sueli Guerreiro -- Cruz, Ana Cecilia Ribeiro -- Nunes, Bruno Tardeli -- Medeiros, Daniele Barbosa de Almeida -- Rodrigues, Daniela Sueli Guerreiro -- Nunes Queiroz, Alice Louize -- da Silva, Eliana Vieira Pinto -- Henriques, Daniele Freitas -- Travassos da Rosa, Elisabeth Salbe -- de Oliveira, Consuelo Silva -- Martins, Livia Caricio -- Vasconcelos, Helena Baldez -- Casseb, Livia Medeiros Neves -- Simith, Darlene de Brito -- Messina, Jane P -- Abade, Leandro -- Lourenco, Jose -- Carlos Junior Alcantara, Luiz -- de Lima, Maricelia Maia -- Giovanetti, Marta -- Hay, Simon I -- de Oliveira, Rodrigo Santos -- Lemos, Poliana da Silva -- de Oliveira, Layanna Freitas -- de Lima, Clayton Pereira Silva -- da Silva, Sandro Patroca -- de Vasconcelos, Janaina Mota -- Franco, Luciano -- Cardoso, Jedson Ferreira -- Vianez-Junior, Joao Lidio da Silva Goncalves -- Mir, Daiana -- Bello, Gonzalo -- Delatorre, Edson -- Khan, Kamran -- Creatore, Marisa -- Coelho, Giovanini Evelim -- de Oliveira, Wanderson Kleber -- Tesh, Robert -- Pybus, Oliver G -- Nunes, Marcio R T -- Vasconcelos, Pedro F C -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095066/Wellcome Trust/United Kingdom -- 102427/Wellcome Trust/United Kingdom -- MR/L009528/1/Medical Research Council/United Kingdom -- R24 AT 120942/AT/NCCIH NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):345-9. doi: 10.1126/science.aaf5036. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Instituto Adolfo Lutz, University of Sao Paulo, Sao Paulo, Brazil. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. ; Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil. ; Centre of Post Graduation in Collective Health, Department of Health, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil. ; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. ; Laboratorio de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. ; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada. Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada. ; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. ; Brazilian Ministry of Health, Brasilia, Brazil. ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013429" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/virology ; Americas/epidemiology ; Animals ; *Disease Outbreaks ; Female ; Genome, Viral/genetics ; Humans ; Incidence ; Insect Vectors/virology ; Microcephaly/*epidemiology/virology ; Molecular Epidemiology ; Molecular Sequence Data ; Mutation ; Pacific Islands/epidemiology ; Phylogeny ; Pregnancy ; RNA, Viral/genetics ; Sequence Analysis, RNA ; Travel ; Zika Virus/classification/*genetics/isolation & purification ; Zika Virus Infection/*epidemiology/transmission/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Travis K -- Jordan, Robert -- Lo, Michael K -- Ray, Adrian S -- Mackman, Richard L -- Soloveva, Veronica -- Siegel, Dustin -- Perron, Michel -- Bannister, Roy -- Hui, Hon C -- Larson, Nate -- Strickley, Robert -- Wells, Jay -- Stuthman, Kelly S -- Van Tongeren, Sean A -- Garza, Nicole L -- Donnelly, Ginger -- Shurtleff, Amy C -- Retterer, Cary J -- Gharaibeh, Dima -- Zamani, Rouzbeh -- Kenny, Tara -- Eaton, Brett P -- Grimes, Elizabeth -- Welch, Lisa S -- Gomba, Laura -- Wilhelmsen, Catherine L -- Nichols, Donald K -- Nuss, Jonathan E -- Nagle, Elyse R -- Kugelman, Jeffrey R -- Palacios, Gustavo -- Doerffler, Edward -- Neville, Sean -- Carra, Ernest -- Clarke, Michael O -- Zhang, Lijun -- Lew, Willard -- Ross, Bruce -- Wang, Queenie -- Chun, Kwon -- Wolfe, Lydia -- Babusis, Darius -- Park, Yeojin -- Stray, Kirsten M -- Trancheva, Iva -- Feng, Joy Y -- Barauskas, Ona -- Xu, Yili -- Wong, Pamela -- Braun, Molly R -- Flint, Mike -- McMullan, Laura K -- Chen, Shan-Shan -- Fearns, Rachel -- Swaminathan, Swami -- Mayers, Douglas L -- Spiropoulou, Christina F -- Lee, William A -- Nichol, Stuart T -- Cihlar, Tomas -- Bavari, Sina -- R01 AI113321/AI/NIAID NIH HHS/ -- R01AI113321/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):381-5. doi: 10.1038/nature17180. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA. ; United States Army Medical Research Institute of Infectious Diseases, Therapeutic Development Center, Frederick, Maryland 21702, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. ; Boston University School of Medicine, Boston, Massachusetts 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934220" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/pharmacokinetics/pharmacology/therapeutic use ; Amino Acid Sequence ; Animals ; Antiviral Agents/pharmacokinetics/pharmacology/*therapeutic use ; Cell Line, Tumor ; Ebolavirus/drug effects ; Female ; HeLa Cells ; Hemorrhagic Fever, Ebola/*drug therapy/prevention & control ; Humans ; Macaca mulatta/*virology ; Male ; Molecular Sequence Data ; Organ Specificity ; Prodrugs/pharmacokinetics/pharmacology/therapeutic use ; Ribonucleotides/pharmacokinetics/pharmacology/*therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-03
    Description: Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neafsey, Daniel E -- Waterhouse, Robert M -- Abai, Mohammad R -- Aganezov, Sergey S -- Alekseyev, Max A -- Allen, James E -- Amon, James -- Arca, Bruno -- Arensburger, Peter -- Artemov, Gleb -- Assour, Lauren A -- Basseri, Hamidreza -- Berlin, Aaron -- Birren, Bruce W -- Blandin, Stephanie A -- Brockman, Andrew I -- Burkot, Thomas R -- Burt, Austin -- Chan, Clara S -- Chauve, Cedric -- Chiu, Joanna C -- Christensen, Mikkel -- Costantini, Carlo -- Davidson, Victoria L M -- Deligianni, Elena -- Dottorini, Tania -- Dritsou, Vicky -- Gabriel, Stacey B -- Guelbeogo, Wamdaogo M -- Hall, Andrew B -- Han, Mira V -- Hlaing, Thaung -- Hughes, Daniel S T -- Jenkins, Adam M -- Jiang, Xiaofang -- Jungreis, Irwin -- Kakani, Evdoxia G -- Kamali, Maryam -- Kemppainen, Petri -- Kennedy, Ryan C -- Kirmitzoglou, Ioannis K -- Koekemoer, Lizette L -- Laban, Njoroge -- Langridge, Nicholas -- Lawniczak, Mara K N -- Lirakis, Manolis -- Lobo, Neil F -- Lowy, Ernesto -- MacCallum, Robert M -- Mao, Chunhong -- Maslen, Gareth -- Mbogo, Charles -- McCarthy, Jenny -- Michel, Kristin -- Mitchell, Sara N -- Moore, Wendy -- Murphy, Katherine A -- Naumenko, Anastasia N -- Nolan, Tony -- Novoa, Eva M -- O'Loughlin, Samantha -- Oringanje, Chioma -- Oshaghi, Mohammad A -- Pakpour, Nazzy -- Papathanos, Philippos A -- Peery, Ashley N -- Povelones, Michael -- Prakash, Anil -- Price, David P -- Rajaraman, Ashok -- Reimer, Lisa J -- Rinker, David C -- Rokas, Antonis -- Russell, Tanya L -- Sagnon, N'Fale -- Sharakhova, Maria V -- Shea, Terrance -- Simao, Felipe A -- Simard, Frederic -- Slotman, Michel A -- Somboon, Pradya -- Stegniy, Vladimir -- Struchiner, Claudio J -- Thomas, Gregg W C -- Tojo, Marta -- Topalis, Pantelis -- Tubio, Jose M C -- Unger, Maria F -- Vontas, John -- Walton, Catherine -- Wilding, Craig S -- Willis, Judith H -- Wu, Yi-Chieh -- Yan, Guiyun -- Zdobnov, Evgeny M -- Zhou, Xiaofan -- Catteruccia, Flaminia -- Christophides, George K -- Collins, Frank H -- Cornman, Robert S -- Crisanti, Andrea -- Donnelly, Martin J -- Emrich, Scott J -- Fontaine, Michael C -- Gelbart, William -- Hahn, Matthew W -- Hansen, Immo A -- Howell, Paul I -- Kafatos, Fotis C -- Kellis, Manolis -- Lawson, Daniel -- Louis, Christos -- Luckhart, Shirley -- Muskavitch, Marc A T -- Ribeiro, Jose M -- Riehle, Michael A -- Sharakhov, Igor V -- Tu, Zhijian -- Zwiebel, Laurence J -- Besansky, Nora J -- 092654/Wellcome Trust/United Kingdom -- R01 AI050243/AI/NIAID NIH HHS/ -- R01 AI063508/AI/NIAID NIH HHS/ -- R01 AI073745/AI/NIAID NIH HHS/ -- R01 AI076584/AI/NIAID NIH HHS/ -- R01 AI080799/AI/NIAID NIH HHS/ -- R01 AI104956/AI/NIAID NIH HHS/ -- R21 AI101459/AI/NIAID NIH HHS/ -- R56 AI107263/AI/NIAID NIH HHS/ -- SC1 AI109055/AI/NIAID NIH HHS/ -- U19 AI089686/AI/NIAID NIH HHS/ -- U19 AI110818/AI/NIAID NIH HHS/ -- U41 HG007234/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):1258522. doi: 10.1126/science.1258522. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. neafsey@broadinstitute.org nbesansk@nd.edu. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland. ; Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran. ; George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; National Vector Borne Disease Control Programme, Ministry of Health, Tafea Province, Vanuatu. ; Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. ; Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA. ; Tomsk State University, 36 Lenina Avenue, Tomsk, Russia. ; Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA. ; Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. ; Inserm, U963, F-67084 Strasbourg, France. CNRS, UPR9022, IBMC, F-67084 Strasbourg, France. ; Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. ; Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia. ; Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. ; Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. ; Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA. ; Institut de Recherche pour le Developpement, Unites Mixtes de Recherche Maladies Infectieuses et Vecteurs Ecologie, Genetique, Evolution et Controle, 911, Avenue Agropolis, BP 64501 Montpellier, France. ; Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA. ; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. ; Centre of Functional Genomics, University of Perugia, Perugia, Italy. ; Genomics Platform, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. ; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso. ; Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA. ; Department of Medical Research, No. 5 Ziwaka Road, Dagon Township, Yangon 11191, Myanmar. ; European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA. ; Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. ; Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Universita degli Studi di Perugia, Perugia, Italy. ; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK. ; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA. ; Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, CY 1678 Nicosia, Cyprus. ; Wits Research Institute for Malaria, Faculty of Health Sciences, and Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, Johannesburg, South Africa. ; National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya. ; Department of Biology, University of Crete, 700 13 Heraklion, Greece. ; Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. ; Virginia Bioinformatics Institute, 1015 Life Science Circle, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, P.O. Box 230-80108, Kilifi, Kenya. ; Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. ; Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA. ; Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA. ; Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy. ; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA. ; Regional Medical Research Centre NE, Indian Council of Medical Research, P.O. Box 105, Dibrugarh-786 001, Assam, India. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA. ; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. ; Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. ; Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA. ; Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland. ; Department of Entomology, Texas A&M University, College Station, TX 77807, USA. ; Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand. ; Fundacao Oswaldo Cruz, Avenida Brasil 4365, RJ Brazil. Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. ; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA. ; Department of Physiology, School of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, A Coruna, Spain. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK. ; School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK. ; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA. ; Program in Public Health, College of Health Sciences, University of California, Irvine, Hewitt Hall, Irvine, CA 92697, USA. ; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA. ; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SJ, UK. ; Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. Centre of Evolutionary and Ecological Studies (Marine Evolution and Conservation group), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, Netherlands. ; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. ; Department of Biology, Indiana University, Bloomington, IN 47405, USA. School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA. ; Centers for Disease Control and Prevention, 1600 Clifton Road NE MSG49, Atlanta, GA 30329, USA. ; Department of Biology, University of Crete, 700 13 Heraklion, Greece. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. Centre of Functional Genomics, University of Perugia, Perugia, Italy. ; Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA. ; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA. ; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Departments of Biological Sciences and Pharmacology, Institutes for Chemical Biology, Genetics and Global Health, Vanderbilt University and Medical Center, Nashville, TN 37235, USA. ; Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. neafsey@broadinstitute.org nbesansk@nd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/classification/*genetics ; Base Sequence ; Chromosomes, Insect/genetics ; Drosophila/genetics ; *Evolution, Molecular ; *Genome, Insect ; Humans ; Insect Vectors/classification/*genetics ; Malaria/*transmission ; Molecular Sequence Data ; Phylogeny ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-06-06
    Description: Detection of human immunodeficiency virus-type 1 (HIV-1) on only one or a few occasions in infants born to infected mothers has been interpreted to indicate that infection may be transient rather than persistent. Forty-two cases of suspected transient HIV-1 viremia among 1562 perinatally exposed seroreverting infants and one mother were reanalyzed. HIV-1 env sequences were not found in specimens from 20; in specimens from 6, somatic genetic analysis revealed that specimens were mistakenly attributed to an infant; and in specimens from 17, phylogenetic analysis failed to demonstrate the expected linkage between the infant's and the mother's virus. These findings argue that transient HIV-1 infection, if it exists, will only rarely be satisfactorily documented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frenkel, L M -- Mullins, J I -- Learn, G H -- Manns-Arcuino, L -- Herring, B L -- Kalish, M L -- Steketee, R W -- Thea, D M -- Nichols, J E -- Liu, S L -- Harmache, A -- He, X -- Muthui, D -- Madan, A -- Hood, L -- Haase, A T -- Zupancic, M -- Staskus, K -- Wolinsky, S -- Krogstad, P -- Zhao, J -- Chen, I -- Koup, R -- Ho, D -- Korber, B -- Apple, R J -- Coombs, R W -- Pahwa, S -- Roberts, N J Jr -- AI27757/AI/NIAID NIH HHS/ -- AI32910/AI/NIAID NIH HHS/ -- UO1-27658/PHS HHS/ -- etc. -- New York, N.Y. -- Science. 1998 May 15;280(5366):1073-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA. lfrenkel@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582120" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Viral/analysis/genetics ; Diagnostic Errors ; Equipment Contamination ; Female ; Genes, env ; HIV Infections/immunology/transmission/*virology ; HIV-1/*genetics/*isolation & purification ; Humans ; Infant ; Infant, Newborn ; Infectious Disease Transmission, Vertical ; Molecular Sequence Data ; Phylogeny ; Polymerase Chain Reaction ; RNA, Viral/analysis ; *Specimen Handling ; T-Lymphocytes, Cytotoxic/immunology ; Viremia/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-11-24
    Description: The complete genome sequence of the radiation-resistant bacterium Deinococcus radiodurans R1 is composed of two chromosomes (2,648,638 and 412,348 base pairs), a megaplasmid (177,466 base pairs), and a small plasmid (45,704 base pairs), yielding a total genome of 3,284, 156 base pairs. Multiple components distributed on the chromosomes and megaplasmid that contribute to the ability of D. radiodurans to survive under conditions of starvation, oxidative stress, and high amounts of DNA damage were identified. Deinococcus radiodurans represents an organism in which all systems for DNA repair, DNA damage export, desiccation and starvation recovery, and genetic redundancy are present in one cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, O -- Eisen, J A -- Heidelberg, J F -- Hickey, E K -- Peterson, J D -- Dodson, R J -- Haft, D H -- Gwinn, M L -- Nelson, W C -- Richardson, D L -- Moffat, K S -- Qin, H -- Jiang, L -- Pamphile, W -- Crosby, M -- Shen, M -- Vamathevan, J J -- Lam, P -- McDonald, L -- Utterback, T -- Zalewski, C -- Makarova, K S -- Aravind, L -- Daly, M J -- Minton, K W -- Fleischmann, R D -- Ketchum, K A -- Nelson, K E -- Salzberg, S -- Smith, H O -- Venter, J C -- Fraser, C M -- R01 CA077712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1571-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567266" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/biosynthesis/chemistry/genetics ; Catalase/genetics ; Chromosomes, Bacterial/genetics ; DNA Damage ; DNA Repair/genetics ; DNA, Bacterial/genetics ; Energy Metabolism ; Genes, Bacterial ; *Genome, Bacterial ; Gram-Positive Cocci/chemistry/classification/*genetics/radiation effects ; Molecular Sequence Data ; Open Reading Frames ; Oxidative Stress ; *Physical Chromosome Mapping ; Plasmids ; Radiation Tolerance ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Superoxide Dismutase/genetics ; Thermus/chemistry/genetics ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-12-15
    Description: The rice Xa21 gene, which confers resistance to Xanthomonas oryzae pv. oryzae race 6, was isolated by positional cloning. Fifty transgenic rice plants carrying the cloned Xa21 gene display high levels of resistance to the pathogen. The sequence of the predicted protein, which carries both a leucine-rich repeat motif and a serine-threonine kinase-like domain, suggests a role in cell surface recognition of a pathogen ligand and subsequent activation of an intracellular defense response. Characterization of Xa21 should facilitate understanding of plant disease resistance and lead to engineered resistance in rice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, W Y -- Wang, G L -- Chen, L L -- Kim, H S -- Pi, L Y -- Holsten, T -- Gardner, J -- Wang, B -- Zhai, W X -- Zhu, L H -- Fauquet, C -- Ronald, P -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1804-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of California, Davis 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525370" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; *Genes, Plant ; Genetic Linkage ; Molecular Sequence Data ; Oryza/enzymology/*genetics/microbiology ; Plant Diseases ; Plant Proteins/*genetics/metabolism ; Plants, Genetically Modified ; Protein-Serine-Threonine Kinases/*genetics/metabolism ; Receptor Protein-Tyrosine Kinases ; Receptors, Cell Surface/*genetics/metabolism ; Xanthomonas/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-11-17
    Description: Strategies for the treatment of human immunodeficiency virus-type 1 (HIV-1) infection must contend with the obstacle of drug resistance. HIV-1 nucleocapsid protein zinc fingers are prime antiviral targets because they are mutationally intolerant and are required both for acute infection and virion assembly. Nontoxic disulfide-substituted benzamides were identified that attack the zinc fingers, inactivate cell-free virions, inhibit acute and chronic infections, and exhibit broad antiretroviral activity. The compounds were highly synergistic with other antiviral agents, and resistant mutants have not been detected. Zinc finger-reactive compounds may offer an anti-HIV strategy that restricts drug-resistance development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice, W G -- Supko, J G -- Malspeis, L -- Buckheit, R W Jr -- Clanton, D -- Bu, M -- Graham, L -- Schaeffer, C A -- Turpin, J A -- Domagala, J -- Gogliotti, R -- Bader, J P -- Halliday, S M -- Coren, L -- Sowder, R C 2nd -- Arthur, L O -- Henderson, L E -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1194-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Antiviral Drug Mechanisms, PRI/DynCorp., National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antiviral Agents/chemistry/pharmacokinetics/*pharmacology ; Benzamides/chemistry/pharmacokinetics/*pharmacology ; Biological Availability ; Capsid/chemistry/*metabolism ; *Capsid Proteins ; Cell Line ; Disulfides/chemistry/pharmacokinetics/*pharmacology ; Drug Resistance, Microbial ; Drug Synergism ; Gene Products, gag/*antagonists & inhibitors/chemistry ; HIV-1/*drug effects/physiology ; Humans ; Male ; Mice ; Molecular Sequence Data ; *Viral Proteins ; Zinc Fingers/*drug effects ; gag Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-11-06
    Description: Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may play a role in antigenic variation was identified. The complete sequencing of chromosome 2 has shown that sequencing of the A+T-rich P. falciparum genome is technically feasible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, M J -- Tettelin, H -- Carucci, D J -- Cummings, L M -- Aravind, L -- Koonin, E V -- Shallom, S -- Mason, T -- Yu, K -- Fujii, C -- Pederson, J -- Shen, K -- Jing, J -- Aston, C -- Lai, Z -- Schwartz, D C -- Pertea, M -- Salzberg, S -- Zhou, L -- Sutton, G G -- Clayton, R -- White, O -- Smith, H O -- Fraser, C M -- Adams, M D -- Venter, J C -- Hoffman, S L -- R01 AI40125-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1126-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/chemistry/genetics ; Base Composition ; Chromosomes/*genetics ; Evolution, Molecular ; *Genes, Protozoan ; Genome, Protozoan ; Introns ; Membrane Proteins/chemistry/genetics ; Molecular Sequence Data ; Multigene Family ; Physical Chromosome Mapping ; Plasmodium falciparum/*genetics ; Protozoan Proteins/chemistry/*genetics ; RNA, Protozoan/genetics ; RNA, Transfer, Glu/genetics ; Repetitive Sequences, Nucleic Acid ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-09
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Shuyu -- Tsun, Zhi-Yang -- Wolfson, Rachel L -- Shen, Kuang -- Wyant, Gregory A -- Plovanich, Molly E -- Yuan, Elizabeth D -- Jones, Tony D -- Chantranupong, Lynne -- Comb, William -- Wang, Tim -- Bar-Peled, Liron -- Zoncu, Roberto -- Straub, Christoph -- Kim, Choah -- Park, Jiwon -- Sabatini, Bernardo L -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA180754/CA/NCI NIH HHS/ -- F31 AG044064/AG/NIA NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567906" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/chemistry/genetics/*metabolism ; Arginine/deficiency/*metabolism ; HEK293 Cells ; Humans ; Lysosomes/*enzymology ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/*metabolism ; Protein Structure, Tertiary ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-13
    Description: Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Tommy Tsan-Yuk -- Zhou, Boping -- Wang, Jia -- Chai, Yujuan -- Shen, Yongyi -- Chen, Xinchun -- Ma, Chi -- Hong, Wenshan -- Chen, Yin -- Zhang, Yanjun -- Duan, Lian -- Chen, Peiwen -- Jiang, Junfei -- Zhang, Yu -- Li, Lifeng -- Poon, Leo Lit Man -- Webby, Richard J -- Smith, David K -- Leung, Gabriel M -- Peiris, Joseph S M -- Holmes, Edward C -- Guan, Yi -- Zhu, Huachen -- HHSN272201400006C/PHS HHS/ -- England -- Nature. 2015 Jun 4;522(7554):102-5. doi: 10.1038/nature14348. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [3] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China. ; 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China. ; Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China. ; 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China. ; 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens/*virology ; China/epidemiology ; Ecosystem ; *Evolution, Molecular ; Genotype ; Humans ; Influenza A Virus, H7N9 Subtype/classification/*genetics/*isolation & ; purification ; Influenza in Birds/*epidemiology/transmission/*virology ; Influenza, Human/epidemiology/transmission/virology ; Molecular Sequence Data ; Reassortant Viruses/genetics/isolation & purification ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...