ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (5)
  • Protein Conformation  (4)
  • *Ecosystem  (3)
  • American Association for the Advancement of Science (AAAS)  (12)
  • 2015-2019  (1)
  • 2000-2004  (11)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2000-01-05
    Description: The nematode pharynx has a potassium channel with unusual properties, which allows the muscles to repolarize quickly and with the proper delay. Here, the Caenorhabditis elegans exp-2 gene is shown to encode this channel. EXP-2 is a Kv-type (voltage-activated) potassium channel that has inward-rectifying properties resembling those of the structurally dissimilar human ether-a-go-go-related gene (HERG) channel. Null and gain-of-function mutations affect pharyngeal muscle excitability in ways that are consistent with the electrophysiological behavior of the channel, and thereby demonstrate a direct link between the kinetics of this unusual channel and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, M W -- Fleischhauer, R -- Dent, J A -- Joho, R H -- Avery, L -- HL46154/HL/NHLBI NIH HHS/ -- NS28407/NS/NINDS NIH HHS/ -- R01 HL046154/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. wdavis@biology.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617464" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Feeding Behavior ; Genes, Helminth ; Genes, Reporter ; Ion Channel Gating ; Kinetics ; Membrane Potentials ; Models, Molecular ; Muscles/metabolism ; Mutation ; Neurons/metabolism ; Oocytes/metabolism ; Pharyngeal Muscles/physiology ; Potassium Channels/chemistry/genetics/*physiology ; Protein Conformation ; RNA, Complementary/genetics ; Recombinant Fusion Proteins/biosynthesis ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, M A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10712150" target="_blank"〉PubMed〈/a〉
    Keywords: *Conservation of Natural Resources ; *Ecosystem ; North America ; Terminology as Topic ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-04-28
    Description: Tree taxa shifted latitude or elevation range in response to changes in Quaternary climate. Because many modern trees display adaptive differentiation in relation to latitude or elevation, it is likely that ancient trees were also so differentiated, with environmental sensitivities of populations throughout the range evolving in conjunction with migrations. Rapid climate changes challenge this process by imposing stronger selection and by distancing populations from environments to which they are adapted. The unprecedented rates of climate changes anticipated to occur in the future, coupled with land use changes that impede gene flow, can be expected to disrupt the interplay of adaptation and migration, likely affecting productivity and threatening the persistence of many species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, M B -- Shaw, R G -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):673-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA. mbdavis@ecology.umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326089" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Biological Evolution ; *Climate ; *Ecosystem ; Genes, Plant ; Genetic Variation ; Genetics, Population ; Pollen ; Time ; Trees/genetics/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-11-25
    Description: beta-Arrestins, originally discovered in the context of heterotrimeric guanine nucleotide binding protein-coupled receptor (GPCR) desensitization, also function in internalization and signaling of these receptors. We identified c-Jun amino-terminal kinase 3 (JNK3) as a binding partner of beta-arrestin 2 using a yeast two-hybrid screen and by coimmunoprecipitation from mouse brain extracts or cotransfected COS-7 cells. The upstream JNK activators apoptosis signal-regulating kinase 1 (ASK1) and mitogen-activated protein kinase (MAPK) kinase 4 were also found in complex with beta-arrestin 2. Cellular transfection of beta-arrestin 2 caused cytosolic retention of JNK3 and enhanced JNK3 phosphorylation stimulated by ASK1. Moreover, stimulation of the angiotensin II type 1A receptor activated JNK3 and triggered the colocalization of beta-arrestin 2 and active JNK3 to intracellular vesicles. Thus, beta-arrestin 2 acts as a scaffold protein, which brings the spatial distribution and activity of this MAPK module under the control of a GPCR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, P H -- Chow, C W -- Miller, W E -- Laporte, S A -- Field, M E -- Lin, F T -- Davis, R J -- Lefkowitz, R J -- CA65861/CA/NCI NIH HHS/ -- CA85422/CA/NCI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090355" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin II/metabolism/pharmacology ; Animals ; Arrestins/genetics/*metabolism ; COS Cells ; Cell Line ; Cell Nucleus/metabolism ; Cytosol/enzymology/metabolism ; Endosomes/enzymology/metabolism ; Enzyme Activation ; Humans ; *MAP Kinase Kinase 4 ; MAP Kinase Kinase Kinase 5 ; MAP Kinase Kinase Kinases/*metabolism ; *MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 10 ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Rats ; Receptor, Angiotensin, Type 1 ; Receptors, Angiotensin/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weston, C R -- Davis, R J -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2439-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axin Protein ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Cytoplasm/enzymology ; Cytoskeletal Proteins/metabolism ; Drug Design ; Glycogen Synthase/metabolism ; Glycogen Synthase Kinase 3 ; Humans ; Insulin/*metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; *Repressor Proteins ; *Signal Transduction ; Substrate Specificity ; *Trans-Activators ; Wnt Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-10-30
    Description: The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, S G -- Yuan, P X -- Wang, M -- Vijayraghavan, S -- Bloom, A K -- Davis, D J -- Gobeske, K T -- Sweatt, J D -- Manji, H K -- Arnsten, A F T -- AG06036/AG/NIA NIH HHS/ -- P50 MH068789/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):882-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8001, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514161" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-Agonists/pharmacology ; Alkaloids ; Animals ; Benzophenanthridines ; Carbolines/pharmacology ; Electrophysiology ; Enzyme Activation ; Female ; Imidazoles/pharmacology ; Lithium Carbonate/pharmacology ; Macaca mulatta ; Male ; Memory/drug effects/*physiology ; Neurons/drug effects/physiology ; Phenanthridines/pharmacology ; Prefrontal Cortex/enzymology/*physiology ; Protein Kinase C/antagonists & inhibitors/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, alpha-1/physiology ; Signal Transduction ; Stress, Physiological/physiopathology ; Tetradecanoylphorbol Acetate/pharmacology ; Valproic Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-02-14
    Description: The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bushnell, David A -- Westover, Kenneth D -- Davis, Ralph E -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):983-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Hybridization ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; TATA Box ; TATA-Box Binding Protein/chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/*chemistry/metabolism ; Transcription Factors, TFII/chemistry/metabolism ; *Transcription, Genetic ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-10-02
    Description: Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armbrust, E Virginia -- Berges, John A -- Bowler, Chris -- Green, Beverley R -- Martinez, Diego -- Putnam, Nicholas H -- Zhou, Shiguo -- Allen, Andrew E -- Apt, Kirk E -- Bechner, Michael -- Brzezinski, Mark A -- Chaal, Balbir K -- Chiovitti, Anthony -- Davis, Aubrey K -- Demarest, Mark S -- Detter, J Chris -- Glavina, Tijana -- Goodstein, David -- Hadi, Masood Z -- Hellsten, Uffe -- Hildebrand, Mark -- Jenkins, Bethany D -- Jurka, Jerzy -- Kapitonov, Vladimir V -- Kroger, Nils -- Lau, Winnie W Y -- Lane, Todd W -- Larimer, Frank W -- Lippmeier, J Casey -- Lucas, Susan -- Medina, Monica -- Montsant, Anton -- Obornik, Miroslav -- Parker, Micaela Schnitzler -- Palenik, Brian -- Pazour, Gregory J -- Richardson, Paul M -- Rynearson, Tatiana A -- Saito, Mak A -- Schwartz, David C -- Thamatrakoln, Kimberlee -- Valentin, Klaus -- Vardi, Assaf -- Wilkerson, Frances P -- Rokhsar, Daniel S -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):79-86.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. armbrust@ocean.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459382" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Algal Proteins/chemistry/genetics/physiology ; Animals ; *Biological Evolution ; Cell Nucleus/genetics ; Chromosomes ; DNA/genetics ; Diatoms/chemistry/cytology/*genetics/metabolism ; *Ecosystem ; Energy Metabolism ; *Genome ; Iron/metabolism ; Light ; Light-Harvesting Protein Complexes/chemistry/genetics/metabolism ; Mitochondria/genetics ; Molecular Sequence Data ; Nitrogen/metabolism ; Photosynthesis ; Plastids/genetics ; Restriction Mapping ; Sequence Alignment ; *Sequence Analysis, DNA ; Silicic Acid/metabolism ; Symbiosis ; Urea/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-02-21
    Description: Dietary cholesterol consumption and intestinal cholesterol absorption contribute to plasma cholesterol levels, a risk factor for coronary heart disease. The molecular mechanism of sterol uptake from the lumen of the small intestine is poorly defined. We show that Niemann-Pick C1 Like 1(NPC1L1) protein plays a critical role in the absorption of intestinal cholesterol. NPC1L1 expression is enriched in the small intestine and is in the brush border membrane of enterocytes. Although otherwise phenotypically normal, NPC1L1-deficient mice exhibit a substantial reduction in absorbed cholesterol, which is unaffected by dietary supplementation of bile acids. Ezetimibe, a drug that inhibits cholesterol absorption, had no effect in NPC1L1 knockout mice, suggesting that NPC1L1 resides in an ezetimibe-sensitive pathway responsible for intestinal cholesterol absorption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altmann, Scott W -- Davis, Harry R Jr -- Zhu, Li-Ji -- Yao, Xiaorui -- Hoos, Lizbeth M -- Tetzloff, Glen -- Iyer, Sai Prasad N -- Maguire, Maureen -- Golovko, Andrei -- Zeng, Ming -- Wang, Luquan -- Murgolo, Nicholas -- Graziano, Michael P -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiovascular/Endocrine Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ, 07033-0539, USA. scott.altmann@spcorp.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anticholesteremic Agents/pharmacology ; Azetidines/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/*metabolism ; Cholic Acid/administration & dosage/pharmacology ; Computational Biology ; Enterocytes/*metabolism ; Ezetimibe ; Female ; Gene Expression Profiling ; Humans ; *Intestinal Absorption/drug effects ; Intestine, Small/metabolism ; Jejunum/metabolism ; Liver/metabolism ; Male ; Membrane Proteins/chemistry/genetics/*metabolism ; Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Proteins/chemistry/genetics/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...