ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • Wiley  (5)
  • National Academy of Sciences  (1)
  • American Association for the Advancement of Science (AAAS)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • Nature Publishing Group
  • 2015-2019  (5)
  • 2000-2004  (1)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-09-23
    Description: Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve this contradiction by complementing SST data based on planktic foraminiferal abundances with surface salinity changes using hydrogen isotopic compositions of alkenones in a core from the central Nordic Seas. The data indicate the prevalence of a relatively cold, low-salinity, surface water layer in the Nordic Seas during most of MIS 11. In spite of the low-density surface layer, which was kept buoyant by continuous melting of surrounding glaciers, warmer Atlantic water was still propagating northward at the subsurface thus maintaining meridional overturning circulation. This study can help to better constrain the impact of continuous melting of Greenland and Arctic ice on high-latitude ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Significance: Cold and dry glacial-state climate conditions persisted in the Southern Hemisphere until approximately 17.7 ka, when paleoclimate records show a largely unexplained sharp, nearly synchronous acceleration in deglaciation. Detailed measurements in Antarctic ice cores document exactly at that time a unique, ∼192-y series of massive halogen-rich volcanic eruptions geochemically attributed to Mount Takahe in West Antarctica. Rather than a coincidence, we postulate that halogen-catalyzed stratospheric ozone depletion over Antarctica triggered large-scale atmospheric circulation and hydroclimate changes similar to the modern Antarctic ozone hole, explaining the synchronicity and abruptness of accelerated Southern Hemisphere deglaciation. Abstract: Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found 〉2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2− oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: The cyanobacterium Trichodesmium is responsible for a significant proportion of the annual "new" nitrogen introduced into the global ocean. Despite being arguably the best studied marine diazotroph, the factors controlling the distribution and growth of Trichodesmium remain a subject of debate, with sea surface temperature, the partial pressure of CO2, and nutrients including iron (Fe) and phosphorus (P), all suggested to be important. Synthesizing data from seven cruises collectively spanning large temporal and spatial scales across the Atlantic Ocean, including two previously unreported studies crossing the largely undersampled South Atlantic gyre, we assessed the relationship between proposed environmental drivers and both community N2 fixation rates and the distribution of Trichodesmium. Simple linear regression analysis would suggest no relationship between any of the sampled environmental variables and N2 fixation rates. However, considering the concentrations of iron and phosphorus together within a simplified resource-ratio framework, illustrated using an idealized numerical model, indicates the combined effects these nutrients have on Trichodesmium and broader diazotroph biogeography, alongside the reciprocal maintenance of different biogeographic provinces of the (sub)tropical Atlantic in states of Fe or P oligotrophy by diazotrophy. The qualitative principles of the resource-ratio framework are argued to be consistent with both the previously described North-South Atlantic contrast in Trichodesmium abundance and the presence and consequence of a substantial non-Trichodesmium diazotrophic community in the western South Atlantic subtropical gyre. A comprehensive, observation-based explanation of the interactions between Trichodesmium and the wider diazotrophic community with iron and phosphorus in the Atlantic Ocean is thus revealed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-07
    Description: The reproductive system is described from 15 giant squid Architeuthis sp., collected between 1972 and 2002 in South African waters. Distinctive features of the male reproductive system are the long muscular terminal organ, with elaboration of the anterior end, and modification of the tips of the ventral arms, probably hectocotilization. The spermatophoric organ has a long finishing gland that extends from the base of the gill. The terminal organ is differentiated internally into three distinct parts, involved in the guidance, storage, protection, expulsion and possibly the coating of spermatophores. Length of spermatophores in the terminal organ varied considerably. Several stages of spermatophores were found, from tentative to false to fully formed spermatophores, within a single animal. Distinctive features of the female reproductive system are a mesentery surrounding the main blood vessels of the ovary and attaching the ovary to the dorsal gladius chamber, multiple branching (at least three times) of the genital aorta that supplies the developing oocytes, high potential fecundity (3.5–6.2 ± 106 oocytes), small eggs and short oviducts that suggest intermittent (extended) spawning. Large concentrations and single spermatangia were found in various places in females, indicating non-specific deposition. The transfer of spermatophores is probably rapid, perhaps because of considerable sexual size dimorphism (at maturity, males are much smaller than females). Implants in males are probably self-induced since the majority were found within reach of the terminal organ opening (primarily on the ventral arms in males).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: The most recent Intergovernmental Panel on Climate Change assessment report concludes that the Atlantic Meridional Overturning Circulation (AMOC) could weaken substantially but is very unlikely to collapse in the 21st century. However, the assessment largely neglected Greenland Ice Sheet (GrIS) mass loss, lacked a comprehensive uncertainty analysis, and was limited to the 21st century. Here in a community effort, improved estimates of GrIS mass loss are included in multicentennial projections using eight state‐of‐the‐science climate models, and an AMOC emulator is used to provide a probabilistic uncertainty assessment. We find that GrIS melting affects AMOC projections, even though it is of secondary importance. By years 2090–2100, the AMOC weakens by 18% [−3%, −34%; 90% probability] in an intermediate greenhouse‐gas mitigation scenario and by 37% [−15%, −65%] under continued high emissions. Afterward, it stabilizes in the former but continues to decline in the latter to −74% [+4%, −100%] by 2290–2300, with a 44% likelihood of an AMOC collapse. This result suggests that an AMOC collapse can be avoided by CO2 mitigation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...