ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1)
  • Other Sources  (35)
  • 2015-2019  (19)
  • 2005-2009  (16)
  • 1975-1979  (1)
  • 1960-1964
Collection
  • Articles  (766)
  • Data  (1)
  • Other Sources  (35)
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rona, Peter A; Harbison, Reginald N; Bassinger, Bobby G; Scott, Robert B; Nalwalk, Andrew J (1976): Tectonic fabric and hydrothermal activity of Mid-Atlantic Ridge crest (lat 26°N). Geological Society of America Bulletin, 87, 661-674, https://doi.org/10.1130/0016-7606(1976)87%3C661:TFAHAO%3E2.0.CO;2
    Publication Date: 2023-12-14
    Description: An asymmetric tectonic fabric was delineated by narrow-beam bathymetric profiles in a 180-km2 area of the Mid-Atlantic Ridge crest at lat 26°N. Features of the tectonic fabric are a continuous rift valley offset by small (〈10-km) transform faults and minor fracture zones expressed as valleys with intervening ridges that trend normal and oblique to the two sides of the rift valley. The discharge zone of a postulated sub-sea-floor hydrothermal convection system is focused by faults on the southeast wall of the rift valley and driven by intrusive heat sources beneath the rift valley. The rift valley has a double structure consisting of linear segments, bounded by ridges, and basins at the intersections of the minor fracture zones. The double structure of the rift valley acts like a template that programs the reproduction of the tectonic fabric. The minor fracture zones form an asymmetric V about the rift valley at variance with the symmetric small circles formed by major fracture zones. To reconcile the asymmetry of minor fracture zones with the symmetry of major fracture zones, it is proposed that the minor fracture zones have been preferentially reoriented by an external stress field attributed to interplate and intraplate motions. Major fracture zones remain symmetric under the same stress field owing to differential stability between minor and major structures of oceanic lithosphere.
    Keywords: Atlantic Ocean; Description; Discoverer (1966); Dredge, chain bag; Dredge, pipe; DRG_C; DRG_P; Event label; Mass; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; T3-72D 253-13; T3-72D 255-19; T4-73-2A3; TAG1972; TAG1972-13; TAG1972-19; TAG1972-20; TAG1972-22; TAG1972-23; TAG1973; TAG1973-2A; TAG1973-3A; TAG1975; TAG1975-1A; TO-75AK61-1A (AK #1671); Trans-Atlantic Geotraverse 1972; Trans-Atlantic Geotraverse 1973; Trans-Atlantic Geotraverse 1975
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32696 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Numerous published studies have reported the Relative Biological Effectiveness (RBE) values for chromosome aberrations induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo has been suggested to show a similar relationship as the quality factor for cancer induction. Therefore, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. However, the RBE value is known to be very different for different types of cancer. Previously, we reported that, even though the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions, the RBE was significantly reduced after multiple cell divisions post irradiation. To test the hypothesis that RBE values for chromosome aberrations are cell type dependent, and different between early and late damages, we exposed human lymphocytes ex vivo, and human mammary epithelial cells in vitro to various charged particles. Chromosome aberrations were quantified using the samples collected at first mitosis post irradiation for initial damages, and the samples collected after multiple generations for the remaining or late arising aberrations. Results of the study suggested that the effectiveness of high-LET charged particles for late chromosome aberrations may be cell type dependent, even though the RBE values are similar for early damages.
    Keywords: Space Radiation; Aerospace Medicine
    Type: JSC-CN-32740 , 2015 Human Research Program Investigators'' Workshop: Integrated Pathway to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in the NASA's technology development roadmap leading to human exploration of the Martian surface. To meet a more challenging set of requirements than previous suit systems standard design features, such as threaded inserts, have been re-analyzed and improved. NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement NASA levied on the suit composites was the ability to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. The design of the interface flanges of the composites allowed some of the inserts to be a "T" style insert that was installed through the entire thickness of the laminate. The flange portion of the insert provides a mechanical lock as a redundancy to the adhesive aiding in the pullout load that the insert can withstand. In some locations it was not possible to utilize at "T" style insert and a blind insert was used instead. These inserts rely completely on the bond strength of the adhesive to resist pullout. It was determined during the design of the suit that the inserts did not need to withstand loads induced from pressure cycling but instead tension induced from torqueing the screws to bolt on hardware which creates a much higher stress on them. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes testing that was performed to determine a k value for helicoil inserts in the Z2 suit and how the insert design was modified to resist a higher pull out tension.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34767 , International Conference on Environmental Systems, Inc. (ICES); Jul 10, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: ICES-2015-82 , M15-4754 , International Conference on Environmental Systems (ICES 2015); Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative biological effectiveness (RBE) of radiation are different for different radiation sources, for different cell types, and for the same cell type with different genetic background at different times after radiation exposure. Caution must be taken in using RBE value to estimate biological effects from radiation exposure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38026 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 degrees Centigrade in space for 14 days before being fixed for analysis of DNA damages with the gamma-H2AX assay. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate gamma rays at 37 degrees Centigrade. Cells exposed to chronic gamma rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET (Linear Energy Transfer) protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.
    Keywords: Space Radiation; Aerospace Medicine
    Type: JSC-CN-38029 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag, partial pressure relief valve, purge valve, donning stand and ISS Body Restraint Tether (BRT). Examples of manned requirements include verification of anthropometric range, suit self-don/doff, secondary suit exit method, donning stand self-ingress/egress and manned mobility covering eight functional tasks. The eight functional tasks include kneeling with object pick-up, standing toe touch, cross-body reach, walking, reach to the SIP and helmet visor. This paper will provide an overview of the Z-2 design. Z-2 requirements verification testing was performed with NASA at the ILC Houston test facility. This paper will also discuss pre-delivery manned and unmanned test results as well as analysis performed in support of requirements verification.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34843 , International Conference on Environmental Systems (ICES); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: The New Frontiers-class OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission is the first American endeavor to return a sample from an asteroid. In preparation for retrieving the sample, OSIRIS-REx is conducting a campaign of challenging proximity-operations maneuvers and scientific observations, bringing the spacecraft closer and closer to the surface of near-Earth asteroid (101955) Bennu. Ultimately, the spacecraft will enter a 900-meter-radius orbit about Bennu and conduct a series of reconnaissance flybys of candidate sample sites before being guided into contact with the surface for the Touch and Go sample collection event. Between August and December 2018, the OSIRIS-REx team acquired the first optical observations of Bennu and used them for navigation. We conducted a series of maneuvers with the main engine, Trajectory Correction Maneuver, and Attitude Control System thruster sets to slow the OSIRIS-REx approach to Bennu and achieve rendezvous on December 3, 2018. This paper describes the trajectory design, navigation conops, and key navigation results from the Approach phase of the OSIRIS-REx mission.
    Keywords: Space Transportation and Safety; Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN66399 , AAS Annual Guidance and Control Conference; Jan 31, 2019 - Feb 06, 2019; Brekenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...