ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (3)
  • Society of Economic Geologists (SEG)  (1)
  • 2015-2019  (3)
  • 2005-2009  (1)
  • 2000-2004
  • 1985-1989
  • 1
    Publication Date: 2009-03-28
    Description: The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized "buttons" containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubner, Wolfgang -- McNerney, Gregory P -- Chen, Ping -- Dale, Benjamin M -- Gordon, Ronald E -- Chuang, Frank Y S -- Li, Xiao-Dong -- Asmuth, David M -- Huser, Thomas -- Chen, Benjamin K -- 5R24 CA095823-04/CA/NCI NIH HHS/ -- AI074420-02/AI/NIAID NIH HHS/ -- DP1 DA028866/DA/NIDA NIH HHS/ -- R01 AI074420/AI/NIAID NIH HHS/ -- R01 AI074420-01A2/AI/NIAID NIH HHS/ -- R01 AI074420-02/AI/NIAID NIH HHS/ -- S10RR09145-01/RR/NCRR NIH HHS/ -- ULRR024146/PHS HHS/ -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1743-7. doi: 10.1126/science.1167525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325119" target="_blank"〉PubMed〈/a〉
    Keywords: CD4-Positive T-Lymphocytes/*physiology/ultrastructure/*virology ; *Cell Adhesion ; Coculture Techniques ; Cytochalasin D/pharmacology ; Endocytosis ; HIV/*physiology/ultrastructure ; Humans ; Imaging, Three-Dimensional ; Jurkat Cells ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; Microscopy, Video ; Receptors, CCR5/metabolism ; Receptors, CXCR4/metabolism ; Recombinant Fusion Proteins/metabolism ; *Virus Internalization ; gag Gene Products, Human Immunodeficiency Virus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-10
    Description: The Handan-Xingtai district in the North China craton is one of the most important concentrations of iron skarn deposits in China, with proven reserves of 900 to 1,000 Mt at an average of 40 to 55 wt % Fe. The iron mineralization occurs predominantly along contact zones between Early Cretaceous intermediate-silicic intrusions and Middle Ordovician marine carbonates intercalated with numerous evaporite beds. In this paper, we present textural features and laser ablation ICP-MS U-Pb dating results of hydrothermal zircon from five major iron skarn deposits to place tight constraints on the timing and duration of the district-scale iron mineralization. Zircon grains from the mineralized skarns are anhedral to subhedral crystals and euhedral tetragonal bipyramids. They are closely intergrown or texturally associated with diopside, garnet, epidote, calcite, albite, and phlogopite. Other common minerals in the skarn assemblages include F-rich hornblende, wilkeite-F, F-apatite, and fluorite. Zircon grains typically contain abundant inclusions of skarn minerals and daughter mineral-rich (mostly magnetite, halite, and sylvite) fluid inclusions. Compositionally, these zircon grains have moderately to extremely high Th (518–7,477 ppm) and U (109–25,610 ppm) contents, with highly variable Th/U ratios ranging from 0.01 to 5.23. The morphological, textural, and geochemical features of the zircons confirm their hydrothermal origin and indicate that they most likely precipitated from high-temperature, F-rich, magmatic-derived ore-forming fluids. The hydrothermal zircon grains yield well-defined concordant U-Pb ages for the five studied iron skarn deposits, with weighted mean 206 Pb/ 238 U dates ranging from 133.6 ± 0.9 to 128.5 ± 1.4 Ma (2 ). These ages are remarkably consistent with U-Pb ages (134.1 ± 1.2 to 128.5 ± 0.9 Ma; 2 ) of magmatic zircon grains from the ore-related intrusions in each deposit, demonstrating that iron skarn mineralization was genetically related to the coeval magmatism. Our new geochronological data, when combined with existing isotopic ages, indicate that iron mineralization and associated magmatism in the Handan-Xingtai district took place mainly at the ca. 137–133 and 131–128 Ma intervals. Iron skarn deposits of similar ages also occur widely in other parts of the eastern North China craton, forming the only known giant Mesozoic iron skarn province in a cratonic block on the Earth. The formation of these iron skarn deposits and associated intrusions coincided in time with lithospheric thinning or destruction of the North China craton, strongly suggesting a causal link between the two processes.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Cancer cells often encounter oxidative stress. However, it is unclear whether normal and cancer cells differentially respond to oxidative stress. Here, we demonstrated that under oxidative stress, hepatocellular carcinoma (HCC) cells exhibit increased antioxidative response and survival rates compared to normal hepatocytes. Oxidative stimulation induces HCC-specifically expressed fructokinase A (KHK-A) phosphorylation at S80 by 5'-adenosine monophosphate-activated protein kinase. KHK-A in turn acts as a protein kinase to phosphorylate p62 at S28, thereby blocking p62 ubiquitination and enhancing p62’s aggregation with Keap1 and Nrf2 activation. Activated Nrf2 promotes expression of genes involved in reactive oxygen species reduction, cell survival, and HCC development in mice. In addition, phosphorylation of KHK-A S80 and p62 S28 and nuclear accumulation of Nrf2 are positively correlated in human HCC specimens and with poor prognosis of patients with HCC. These findings underscore the role of the protein kinase activity of KHK-A in antioxidative stress and HCC development.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉How somatic mutations accumulate in normal cells is poorly understood. A comprehensive analysis of RNA sequencing data from ~6700 samples across 29 normal tissues revealed multiple somatic variants, demonstrating that macroscopic clones can be found in many normal tissues. We found that sun-exposed skin, esophagus, and lung have a higher mutation burden than other tested tissues, which suggests that environmental factors can promote somatic mosaicism. Mutation burden was associated with both age and tissue-specific cell proliferation rate, highlighting that mutations accumulate over both time and number of cell divisions. Finally, normal tissues were found to harbor mutations in known cancer genes and hotspots. This study provides a broad view of macroscopic clonal expansion in human tissues, thus serving as a foundation for associating clonal expansion with environmental factors, aging, and risk of disease.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...