ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Male  (27)
  • American Association for the Advancement of Science (AAAS)  (27)
  • PANGAEA
  • 2015-2019
  • 2005-2009  (11)
  • 2000-2004  (9)
  • 1995-1999  (7)
Collection
Publisher
Years
Year
  • 11
    Publication Date: 2008-09-27
    Description: Almost two decades after CFTR was identified as the gene responsible for cystic fibrosis (CF), we still lack answers to many questions about the pathogenesis of the disease, and it remains incurable. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but the mutant mice do not develop the characteristic manifestations of human CF, including abnormalities of the pancreas, lung, intestine, liver, and other organs. Because pigs share many anatomical and physiological features with humans, we generated pigs with a targeted disruption of both CFTR alleles. Newborn pigs lacking CFTR exhibited defective chloride transport and developed meconium ileus, exocrine pancreatic destruction, and focal biliary cirrhosis, replicating abnormalities seen in newborn humans with CF. The pig model may provide opportunities to address persistent questions about CF pathogenesis and accelerate discovery of strategies for prevention and treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rogers, Christopher S -- Stoltz, David A -- Meyerholz, David K -- Ostedgaard, Lynda S -- Rokhlina, Tatiana -- Taft, Peter J -- Rogan, Mark P -- Pezzulo, Alejandro A -- Karp, Philip H -- Itani, Omar A -- Kabel, Amanda C -- Wohlford-Lenane, Christine L -- Davis, Greg J -- Hanfland, Robert A -- Smith, Tony L -- Samuel, Melissa -- Wax, David -- Murphy, Clifton N -- Rieke, August -- Whitworth, Kristin -- Uc, Aliye -- Starner, Timothy D -- Brogden, Kim A -- Shilyansky, Joel -- McCray, Paul B Jr -- Zabner, Joseph -- Prather, Randall S -- Welsh, Michael J -- AI076671/AI/NIAID NIH HHS/ -- DK54759/DK/NIDDK NIH HHS/ -- HL07638/HL/NHLBI NIH HHS/ -- HL51670/HL/NHLBI NIH HHS/ -- K08 AI076671/AI/NIAID NIH HHS/ -- K08 AI076671-01/AI/NIAID NIH HHS/ -- P01 HL051670/HL/NHLBI NIH HHS/ -- P01 HL051670-15/HL/NHLBI NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- P30 DK054759-10/DK/NIDDK NIH HHS/ -- P30 DK054759-109004/DK/NIDDK NIH HHS/ -- R01 DK051315/DK/NIDDK NIH HHS/ -- T32 HL007638/HL/NHLBI NIH HHS/ -- T32 HL007638-23/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Sep 26;321(5897):1837-41. doi: 10.1126/science.1163600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Chlorides/metabolism ; *Cystic Fibrosis/genetics/pathology/physiopathology ; Cystic Fibrosis Transmembrane Conductance Regulator/*genetics/metabolism ; *Disease Models, Animal ; Female ; Gallbladder/pathology ; Ileus/pathology/physiopathology ; Intestines/pathology ; Ion Transport ; Liver/pathology ; Liver Cirrhosis, Biliary/pathology ; Lung/pathology ; Male ; Pancreas, Exocrine/pathology ; Recombination, Genetic ; *Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-03-03
    Description: Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder. Ten percent of cases are inherited; most involve unidentified genes. We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS. The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus. In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS. Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwiatkowski, T J Jr -- Bosco, D A -- Leclerc, A L -- Tamrazian, E -- Vanderburg, C R -- Russ, C -- Davis, A -- Gilchrist, J -- Kasarskis, E J -- Munsat, T -- Valdmanis, P -- Rouleau, G A -- Hosler, B A -- Cortelli, P -- de Jong, P J -- Yoshinaga, Y -- Haines, J L -- Pericak-Vance, M A -- Yan, J -- Ticozzi, N -- Siddique, T -- McKenna-Yasek, D -- Sapp, P C -- Horvitz, H R -- Landers, J E -- Brown, R H Jr -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1205-8. doi: 10.1126/science.1166066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA. tkwiatkowski@partners.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251627" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Amino Acid Substitution ; Amyotrophic Lateral Sclerosis/*genetics/metabolism/pathology ; Animals ; Brain/pathology ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 16/*genetics ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Exons ; Female ; Humans ; Male ; Mice ; Motor Neurons/chemistry/metabolism/ultrastructure ; Mutant Proteins/chemistry/genetics/metabolism ; *Mutation, Missense ; Neurons/metabolism/ultrastructure ; RNA/metabolism ; RNA-Binding Protein FUS/chemistry/*genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Spinal Cord/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-10-30
    Description: The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, S G -- Yuan, P X -- Wang, M -- Vijayraghavan, S -- Bloom, A K -- Davis, D J -- Gobeske, K T -- Sweatt, J D -- Manji, H K -- Arnsten, A F T -- AG06036/AG/NIA NIH HHS/ -- P50 MH068789/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):882-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8001, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514161" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-Agonists/pharmacology ; Alkaloids ; Animals ; Benzophenanthridines ; Carbolines/pharmacology ; Electrophysiology ; Enzyme Activation ; Female ; Imidazoles/pharmacology ; Lithium Carbonate/pharmacology ; Macaca mulatta ; Male ; Memory/drug effects/*physiology ; Neurons/drug effects/physiology ; Phenanthridines/pharmacology ; Prefrontal Cortex/enzymology/*physiology ; Protein Kinase C/antagonists & inhibitors/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, alpha-1/physiology ; Signal Transduction ; Stress, Physiological/physiopathology ; Tetradecanoylphorbol Acetate/pharmacology ; Valproic Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Mark A -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1891.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591186" target="_blank"〉PubMed〈/a〉
    Keywords: *Awards and Prizes ; Female ; Humans ; Male ; Men ; *National Institutes of Health (U.S.) ; *Prejudice ; United States ; *Women
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-09-09
    Description: Human genetic diseases that resemble accelerated aging provide useful models for gerontologists. They combine known single-gene mutations with deficits in selected tissues that are reminiscent of changes seen during normal aging. Here, we describe recent progress toward linking molecular and cellular changes with the phenotype seen in two of these disorders. One in particular, Werner syndrome, provides evidence to support the hypothesis that the senescence of somatic cells may be a causal agent of normal aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kipling, David -- Davis, Terence -- Ostler, Elizabeth L -- Faragher, Richard G A -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1426-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353794" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Aging ; Cell Division ; DNA Helicases/genetics/physiology ; Exodeoxyribonucleases ; Female ; Gene Expression ; Humans ; Male ; Mice ; Models, Animal ; Mutation ; Phenotype ; RecQ Helicases ; Telomere/metabolism ; *Werner Syndrome/genetics/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-18
    Description: The amygdala was more responsive to fearful (larger) eye whites than to happy (smaller) eye whites presented in a masking paradigm that mitigated subjects' awareness of their presence and aberrant nature. These data demonstrate that the amygdala is responsive to elements of.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whalen, Paul J -- Kagan, Jerome -- Cook, Robert G -- Davis, F Caroline -- Kim, Hackjin -- Polis, Sara -- McLaren, Donald G -- Somerville, Leah H -- McLean, Ashly A -- Maxwell, Jeffrey S -- Johnstone, Tom -- 01866/PHS HHS/ -- 069315/PHS HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2061.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, W. M. Keck Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, USA. pwhalen@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604401" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amygdala/*physiology ; *Facial Expression ; *Fear ; Female ; Happiness ; Humans ; Magnetic Resonance Imaging ; Male ; Pattern Recognition, Visual ; Perceptual Masking ; *Sclera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-02-21
    Description: Dietary cholesterol consumption and intestinal cholesterol absorption contribute to plasma cholesterol levels, a risk factor for coronary heart disease. The molecular mechanism of sterol uptake from the lumen of the small intestine is poorly defined. We show that Niemann-Pick C1 Like 1(NPC1L1) protein plays a critical role in the absorption of intestinal cholesterol. NPC1L1 expression is enriched in the small intestine and is in the brush border membrane of enterocytes. Although otherwise phenotypically normal, NPC1L1-deficient mice exhibit a substantial reduction in absorbed cholesterol, which is unaffected by dietary supplementation of bile acids. Ezetimibe, a drug that inhibits cholesterol absorption, had no effect in NPC1L1 knockout mice, suggesting that NPC1L1 resides in an ezetimibe-sensitive pathway responsible for intestinal cholesterol absorption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altmann, Scott W -- Davis, Harry R Jr -- Zhu, Li-Ji -- Yao, Xiaorui -- Hoos, Lizbeth M -- Tetzloff, Glen -- Iyer, Sai Prasad N -- Maguire, Maureen -- Golovko, Andrei -- Zeng, Ming -- Wang, Luquan -- Murgolo, Nicholas -- Graziano, Michael P -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiovascular/Endocrine Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ, 07033-0539, USA. scott.altmann@spcorp.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anticholesteremic Agents/pharmacology ; Azetidines/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/*metabolism ; Cholic Acid/administration & dosage/pharmacology ; Computational Biology ; Enterocytes/*metabolism ; Ezetimibe ; Female ; Gene Expression Profiling ; Humans ; *Intestinal Absorption/drug effects ; Intestine, Small/metabolism ; Jejunum/metabolism ; Liver/metabolism ; Male ; Membrane Proteins/chemistry/genetics/*metabolism ; Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Proteins/chemistry/genetics/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2005-10-15
    Description: Tourette's syndrome (TS) is a genetically influenced developmental neuropsychiatric disorder characterized by chronic vocal and motor tics. We studied Slit and Trk-like 1 (SLITRK1) as a candidate gene on chromosome 13q31.1 because of its proximity to a de novo chromosomal inversion in a child with TS. Among 174 unrelated probands, we identified a frameshift mutation and two independent occurrences of the identical variant in the binding site for microRNA hsa-miR-189. These variants were absent from 3600 control chromosomes. SLITRK1 mRNA and hsa-miR-189 showed an overlapping expression pattern in brain regions previously implicated in TS. Wild-type SLITRK1, but not the frameshift mutant, enhanced dendritic growth in primary neuronal cultures. Collectively, these findings support the association of rare SLITRK1 sequence variants with TS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abelson, Jesse F -- Kwan, Kenneth Y -- O'Roak, Brian J -- Baek, Danielle Y -- Stillman, Althea A -- Morgan, Thomas M -- Mathews, Carol A -- Pauls, David L -- Rasin, Mladen-Roko -- Gunel, Murat -- Davis, Nicole R -- Ercan-Sencicek, A Gulhan -- Guez, Danielle H -- Spertus, John A -- Leckman, James F -- Dure, Leon S 4th -- Kurlan, Roger -- Singer, Harvey S -- Gilbert, Donald L -- Farhi, Anita -- Louvi, Angeliki -- Lifton, Richard P -- Sestan, Nenad -- State, Matthew W -- K23 RR16118/RR/NCRR NIH HHS/ -- R01 NS054273/NS/NINDS NIH HHS/ -- R01 NS43520/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):317-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224024" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adolescent ; Animals ; Attention Deficit Disorder with Hyperactivity/complications/genetics ; Brain/metabolism ; Child ; Child, Preschool ; Chromosome Inversion ; Chromosome Mapping ; *Chromosomes, Human, Pair 13 ; Dna ; DNA Mutational Analysis ; Female ; Frameshift Mutation ; Humans ; In Situ Hybridization, Fluorescence ; Male ; Membrane Proteins/*genetics ; Mice ; *Mutation ; Nerve Tissue Proteins/*genetics ; Pedigree ; Sequence Analysis, DNA ; Tourette Syndrome/complications/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1998-03-21
    Description: The mechanism by which mammalian circadian clocks are entrained to light-dark cycles is unknown. The clock that drives behavioral rhythms is located in the suprachiasmatic nucleus (SCN) of the brain, and entrainment is thought to require induction of genes in the SCN by light. A complementary DNA subtraction method based on genomic representational difference analysis was developed to identify such genes without making assumptions about their nature. Four clones corresponded to genes induced specifically in the SCN by light, all of which showed gating of induction by the circadian clock. Among these genes are c-fos and nur77, two of the five early-response genes known to be induced in the SCN by light, and egr-3, a zinc finger transcription factor not previously identified in the SCN. In contrast to known examples, egr-3 induction by light is restricted to the ventral SCN, a structure implicated in entrainment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, M E -- Viswanathan, N -- Kuhlman, S -- Davis, F C -- Weitz, C J -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1544-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antisense Elements (Genetics) ; Blotting, Southern ; Circadian Rhythm ; Cloning, Molecular ; Cricetinae ; DNA, Complementary ; DNA-Binding Proteins/*genetics ; Early Growth Response Protein 3 ; *Gene Expression Regulation ; *Genes, fos ; *Light ; Male ; Mesocricetus ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Polymerase Chain Reaction ; RNA, Messenger/analysis/genetics ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Suprachiasmatic Nucleus/*physiology ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...