ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line, Tumor  (68)
  • American Association for the Advancement of Science (AAAS)  (68)
  • American Meteorological Society
  • 2015-2019  (18)
  • 2010-2014  (50)
  • 1955-1959
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-09-19
    Description: Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, David T -- Zheng, Yu -- Wittner, Ben S -- Lee, Richard J -- Zhu, Huili -- Broderick, Katherine T -- Desai, Rushil -- Fox, Douglas B -- Brannigan, Brian W -- Trautwein, Julie -- Arora, Kshitij S -- Desai, Niyati -- Dahl, Douglas M -- Sequist, Lecia V -- Smith, Matthew R -- Kapur, Ravi -- Wu, Chin-Lee -- Shioda, Toshi -- Ramaswamy, Sridhar -- Ting, David T -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 2R01CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1351-6. doi: 10.1126/science.aab0917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383955" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/pharmacology/*therapeutic use ; Animals ; Cell Line, Tumor ; Drug Resistance, Neoplasm/*genetics ; Humans ; Male ; Mice ; Neoplastic Cells, Circulating/drug effects/*metabolism ; Phenylthiohydantoin/*analogs & derivatives/pharmacology/therapeutic use ; Prostate/drug effects/metabolism/pathology ; Prostatic Neoplasms/*drug therapy/*pathology ; Proto-Oncogene Proteins/genetics/metabolism ; RNA Splicing ; Receptors, Androgen/*genetics ; Sequence Analysis, RNA/methods ; Signal Transduction ; Single-Cell Analysis/methods ; Transcriptome ; Wnt Proteins/genetics/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-06
    Description: Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Daniel F -- Shackelford, David B -- Mihaylova, Maria M -- Gelino, Sara -- Kohnz, Rebecca A -- Mair, William -- Vasquez, Debbie S -- Joshi, Aashish -- Gwinn, Dana M -- Taylor, Rebecca -- Asara, John M -- Fitzpatrick, James -- Dillin, Andrew -- Viollet, Benoit -- Kundu, Mondira -- Hansen, Malene -- Shaw, Reuben J -- 1P01CA120964/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-05/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 DK080425/DK/NIDDK NIH HHS/ -- R01 DK080425-04/DK/NIDDK NIH HHS/ -- R01 DK080425-05/DK/NIDDK NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- T32 CA009370-29/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):456-61. doi: 10.1126/science.1196371. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205641" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Caenorhabditis elegans/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Energy Metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Liver/metabolism ; Metformin/pharmacology ; Mice ; Mitochondria, Liver/metabolism/ultrastructure ; Phenformin/pharmacology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-19
    Description: Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of 〉4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration 〈 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473092/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473092/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, Stephan -- Plouffe, David M -- Kuhen, Kelli L -- Bonamy, Ghislain M C -- Wu, Tao -- Barnes, S Whitney -- Bopp, Selina E -- Borboa, Rachel -- Bright, A Taylor -- Che, Jianwei -- Cohen, Steve -- Dharia, Neekesh V -- Gagaring, Kerstin -- Gettayacamin, Montip -- Gordon, Perry -- Groessl, Todd -- Kato, Nobutaka -- Lee, Marcus C S -- McNamara, Case W -- Fidock, David A -- Nagle, Advait -- Nam, Tae-gyu -- Richmond, Wendy -- Roland, Jason -- Rottmann, Matthias -- Zhou, Bin -- Froissard, Patrick -- Glynne, Richard J -- Mazier, Dominique -- Sattabongkot, Jetsumon -- Schultz, Peter G -- Tuntland, Tove -- Walker, John R -- Zhou, Yingyao -- Chatterjee, Arnab -- Diagana, Thierry T -- Winzeler, Elizabeth A -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI079709-04/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI090141-02/AI/NIAID NIH HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1372-7. doi: 10.1126/science.1211936. Epub 2011 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Cell Line, Tumor ; *Drug Discovery ; Drug Evaluation, Preclinical ; Drug Resistance ; Erythrocytes/parasitology ; Humans ; Imidazoles/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Liver/*parasitology ; Malaria/*drug therapy/parasitology/prevention & control ; Mice ; Mice, Inbred BALB C ; Molecular Structure ; Piperazines/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Plasmodium/cytology/*drug effects/growth & development/physiology ; Plasmodium berghei/cytology/drug effects/growth & development/physiology ; Plasmodium falciparum/cytology/drug effects/growth & development/physiology ; Plasmodium yoelii/cytology/drug effects/growth & development/physiology ; Polymorphism, Single Nucleotide ; Protozoan Proteins/chemistry/genetics/metabolism ; Random Allocation ; Small Molecule Libraries ; Sporozoites/drug effects/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-12
    Description: Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Anna Y -- St Onge, Robert P -- Proctor, Michael J -- Wallace, Iain M -- Nile, Aaron H -- Spagnuolo, Paul A -- Jitkova, Yulia -- Gronda, Marcela -- Wu, Yan -- Kim, Moshe K -- Cheung-Ong, Kahlin -- Torres, Nikko P -- Spear, Eric D -- Han, Mitchell K L -- Schlecht, Ulrich -- Suresh, Sundari -- Duby, Geoffrey -- Heisler, Lawrence E -- Surendra, Anuradha -- Fung, Eula -- Urbanus, Malene L -- Gebbia, Marinella -- Lissina, Elena -- Miranda, Molly -- Chiang, Jennifer H -- Aparicio, Ana Maria -- Zeghouf, Mahel -- Davis, Ronald W -- Cherfils, Jacqueline -- Boutry, Marc -- Kaiser, Chris A -- Cummins, Carolyn L -- Trimble, William S -- Brown, Grant W -- Schimmer, Aaron D -- Bankaitis, Vytas A -- Nislow, Corey -- Bader, Gary D -- Giaever, Guri -- GM103504/GM/NIGMS NIH HHS/ -- GM44530/GM/NIGMS NIH HHS/ -- MOP-700724/Canadian Institutes of Health Research/Canada -- MOP-79368/Canadian Institutes of Health Research/Canada -- MOP-81340/Canadian Institutes of Health Research/Canada -- P01 HG000205/HG/NHGRI NIH HHS/ -- P41 GM103504/GM/NIGMS NIH HHS/ -- R01 003317-07/PHS HHS/ -- R01 CA157456/CA/NCI NIH HHS/ -- R01 GM044530/GM/NIGMS NIH HHS/ -- R01 HG003317/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):208-11. doi: 10.1126/science.1250217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24723613" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cells/*drug effects ; Drug Evaluation, Preclinical/*methods ; Drug Resistance/*genetics ; *Gene Regulatory Networks ; Genome-Wide Association Study/*methods ; Haploinsufficiency ; Humans ; Pharmacogenetics ; Saccharomyces cerevisiae/drug effects/genetics ; Small Molecule Libraries/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-29
    Description: Cytotoxic chemotherapy targets elements common to all nucleated human cells, such as DNA and microtubules, yet it selectively kills tumor cells. Here we show that clinical response to these drugs correlates with, and may be partially governed by, the pretreatment proximity of tumor cell mitochondria to the apoptotic threshold, a property called mitochondrial priming. We used BH3 profiling to measure priming in tumor cells from patients with multiple myeloma, acute myelogenous and lymphoblastic leukemia, and ovarian cancer. This assay measures mitochondrial response to peptides derived from proapoptotic BH3 domains of proteins critical for death signaling to mitochondria. Patients with highly primed cancers exhibited superior clinical response to chemotherapy. In contrast, chemoresistant cancers and normal tissues were poorly primed. Manipulation of mitochondrial priming might enhance the efficacy of cytotoxic agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280949/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280949/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni Chonghaile, Triona -- Sarosiek, Kristopher A -- Vo, Thanh-Trang -- Ryan, Jeremy A -- Tammareddi, Anupama -- Moore, Victoria Del Gaizo -- Deng, Jing -- Anderson, Kenneth C -- Richardson, Paul -- Tai, Yu-Tzu -- Mitsiades, Constantine S -- Matulonis, Ursula A -- Drapkin, Ronny -- Stone, Richard -- Deangelo, Daniel J -- McConkey, David J -- Sallan, Stephen E -- Silverman, Lewis -- Hirsch, Michelle S -- Carrasco, Daniel Ruben -- Letai, Anthony -- P01CA068484/CA/NCI NIH HHS/ -- P01CA139980/CA/NCI NIH HHS/ -- R01 CA129974/CA/NCI NIH HHS/ -- R01 CA129974-05/CA/NCI NIH HHS/ -- R01CA129974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1129-33. doi: 10.1126/science.1206727. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033517" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Animals ; Antineoplastic Agents/*therapeutic use ; *Apoptosis ; Cell Line, Tumor ; Cell Proliferation ; Child ; Disease-Free Survival ; Drug Resistance, Neoplasm ; Female ; Humans ; Leukemia, Myeloid, Acute/drug therapy/physiopathology ; Male ; Membrane Potential, Mitochondrial ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Mitochondria/*physiology ; Multiple Myeloma/drug therapy/physiopathology ; Neoplasms/*drug therapy/*physiopathology ; Ovarian Neoplasms/drug therapy/physiopathology ; Peptide Fragments/metabolism ; Permeability ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/physiopathology ; Proto-Oncogene Proteins c-bcl-2/chemistry/metabolism ; Remission Induction ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-01
    Description: The mTOR complex 1 (mTORC1) pathway promotes cell growth in response to many cues, including amino acids, which act through the Rag guanosine triphosphatases (GTPases) to promote mTORC1 translocation to the lysosomal surface, its site of activation. Although progress has been made in identifying positive regulators of the Rags, it is unknown if negative factors also exist. Here, we identify GATOR as a complex that interacts with the Rags and is composed of two subcomplexes we call GATOR1 and -2. Inhibition of GATOR1 subunits (DEPDC5, Nprl2, and Nprl3) makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits (Mios, WDR24, WDR59, Seh1L, and Sec13) suppresses mTORC1 signaling, and epistasis analysis shows that GATOR2 negatively regulates DEPDC5. GATOR1 has GTPase-activating protein (GAP) activity for RagA and RagB, and its components are mutated in human cancer. In cancer cells with inactivating mutations in GATOR1, mTORC1 is hyperactive and insensitive to amino acid starvation, and such cells are hypersensitive to rapamycin, an mTORC1 inhibitor. Thus, we identify a key negative regulator of the Rag GTPases and reveal that, like other mTORC1 regulators, Rag function can be deregulated in cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728654/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728654/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Peled, Liron -- Chantranupong, Lynne -- Cherniack, Andrew D -- Chen, Walter W -- Ottina, Kathleen A -- Grabiner, Brian C -- Spear, Eric D -- Carter, Scott L -- Meyerson, Matthew -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- U24CA143867/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723238" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Carrier Proteins/antagonists & inhibitors/genetics/*metabolism ; Cell Line, Tumor ; GTPase-Activating Proteins ; HEK293 Cells ; Humans ; Lysosomes/*enzymology ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes ; Mutation ; Neoplasms/*enzymology/genetics ; Nuclear Proteins/antagonists & inhibitors/genetics/metabolism ; Proteins/*metabolism ; RNA, Small Interfering/genetics ; TOR Serine-Threonine Kinases ; Tumor Suppressor Proteins/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-05
    Description: In a short hairpin RNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small guanosine triphosphatase (GTPase)-a protein previously implicated in endomembrane trafficking-as a regulator of the phosphatidylinositol 3'-OH kinase (PI3K) pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and copurifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive platelet-derived growth factor receptor alpha to LAMP2-positive endomembranes in the absence of ligand, suggesting that there may be latent oncogenic potential in dysregulated endomembrane trafficking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600465/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600465/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, Douglas B -- Zoncu, Roberto -- Root, David E -- Sabatini, David M -- Sawyers, Charles L -- 1DP2CA195761-01/CA/NCI NIH HHS/ -- AI47389/AI/NIAID NIH HHS/ -- CA092629/CA/NCI NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA155169/CA/NCI NIH HHS/ -- GM07739/GM/NIGMS NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA155169/CA/NCI NIH HHS/ -- R01 CA193837/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):211-7. doi: 10.1126/science.aaa4903. Epub 2015 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Weill Cornell/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. sawyersc@mskcc.org sabatini@wi.mit.edu. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. sawyersc@mskcc.org sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26338797" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line, Tumor ; Gene Deletion ; Humans ; Immunoprecipitation ; Lysosomal-Associated Membrane Protein 2/metabolism ; Multiprotein Complexes/metabolism ; Mutation ; Neoplasms/genetics/*metabolism/pathology ; Oncogene Proteins/genetics/*metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation/genetics ; Protein Transport ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; RNA, Small Interfering/genetics ; Receptor, Platelet-Derived Growth Factor alpha/metabolism ; TOR Serine-Threonine Kinases/metabolism ; rab GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-26
    Description: 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mavrakis, Konstantinos J -- McDonald, E Robert 3rd -- Schlabach, Michael R -- Billy, Eric -- Hoffman, Gregory R -- deWeck, Antoine -- Ruddy, David A -- Venkatesan, Kavitha -- Yu, Jianjun -- McAllister, Gregg -- Stump, Mark -- deBeaumont, Rosalie -- Ho, Samuel -- Yue, Yingzi -- Liu, Yue -- Yan-Neale, Yan -- Yang, Guizhi -- Lin, Fallon -- Yin, Hong -- Gao, Hui -- Kipp, D Randal -- Zhao, Songping -- McNamara, Joshua T -- Sprague, Elizabeth R -- Zheng, Bing -- Lin, Ying -- Cho, Young Shin -- Gu, Justin -- Crawford, Kenneth -- Ciccone, David -- Vitari, Alberto C -- Lai, Albert -- Capka, Vladimir -- Hurov, Kristen -- Porter, Jeffery A -- Tallarico, John -- Mickanin, Craig -- Lees, Emma -- Pagliarini, Raymond -- Keen, Nicholas -- Schmelzle, Tobias -- Hofmann, Francesco -- Stegmeier, Frank -- Sellers, William R -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1208-13. doi: 10.1126/science.aad5944. Epub 2016 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA. ; Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland. ; Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA. ; China Novartis Institutes for Biomedical Research, Shanghai 201203, China. ; Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA. william.sellers@novartis.com fstegmeier@ksqtx.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912361" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Survival ; Cyclin-Dependent Kinase Inhibitor p16/genetics/*metabolism ; Deoxyadenosines/metabolism ; Gene Deletion ; Humans ; Methionine/*metabolism ; Neoplasms/drug therapy/genetics/*metabolism ; Protein-Arginine N-Methyltransferases/genetics/*metabolism ; Purine-Nucleoside Phosphorylase/genetics/*metabolism ; RNA, Small Interfering/genetics ; Thionucleosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-05
    Description: The His274--〉Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007-2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by "permissive" mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, Jesse D -- Gong, Lizhi Ian -- Baltimore, David -- P01 CA132681/CA/NCI NIH HHS/ -- P01 CA132681-01A27259/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1272-5. doi: 10.1126/science.1187816.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522774" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antiviral Agents/*pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Drug Resistance, Viral/*genetics ; *Evolution, Molecular ; Genes, Viral ; Genetic Fitness ; Humans ; Influenza A Virus, H1N1 Subtype/*drug effects/*genetics/growth & development ; Influenza, Human/drug therapy/*virology ; Mutation ; Neuraminidase/antagonists & inhibitors/chemistry/genetics/metabolism ; Oseltamivir/*pharmacology ; Phylogeny ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...