ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: The R/V Oceanus, on Cruise 475, carried out the deployment of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Oceanus departed from Woods Hole, Massachusetts on September 22, 2011 and steamed south to the location of the mooring deployments on the shelf break. Over three days, September 23-25, Oceanus surveyed the bottom at the planned mooring sites, deployed the moorings, and carried out on site verification of the functioning of the moorings and moored hardware. Oceanus returned to Woods Hole on September 26, 2011.
    Description: Funding was provided by the National Science Foundation through the Consortium for Ocean Leadership
    Keywords: Oceanus (Ship : 1975-) Cruise OC475 ; Oceanographic buoys ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 4553–4569, doi:10.1002/jgrc.20360.
    Description: An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5–15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models.
    Description: J.P. was supported for part of this work by a graduate exchange studentship from the Graduate School of the National Oceanography Centre, Southampton. J.T.F. was supported by NSF OCE Award 0745508, the Charles D. Hollister Fund for Assistant Scientist Support, and the John E. and Anne W. Sawyer Endowed Fund in Special Support of Scientific Staff. R.A.W. was supported by the Office of Naval Research for the deployment of the Arabian Sea surface mooring, and by the NOAA Climate Program and Climate Observation Division for the deployment of the PACS and Stratus surface moorings. J.T.F. was supported under a cooperative program between WHOI and King Abdullah University of Science and Technology (KAUST; Awards USA00001, USA00002, and KSA00011) of the Kingdom of Saudi Arabia for the deployment of the KAUST surface moorings.
    Description: 2014-03-13
    Keywords: Diurnal warm layer ; Upper ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2295–2309, doi:10.1002/jgrc.20175.
    Description: A number of studies have posited that coastally generated eddies could cool the southeast Pacific Ocean (SEP) by advecting cool, upwelled waters offshore. We examine this mechanism by characterizing the upper-ocean properties of mesoscale eddies in the SEP with a variety of observations and by estimating the surface-layer eddy heat flux divergence with satellite data. Cyclonic and anticyclonic eddies observed during two cruises featured deep positive salinity anomalies along the 26.5 kg m−3isopycnal, indicating that the eddies had likely trapped and transported coastal waters offshore. The cyclonic eddies observed during the cruises were characterized by shoaling isopycnals in the upper 200 m and cool near-surface temperature anomalies, whereas the upper-ocean structure of anticyclonic eddies was more variable. Using a variety of large-scale observations, including Argo float profiles, drifter records, and satellite sea surface temperature fields, we show that, relative to mean conditions, cyclonic eddies are associated with cooler surface temperatures and that anticyclonic eddies are associated with warmer surface temperatures. Within each data set, the mean eddy surface temperature anomalies are small and of approximately equal magnitude but opposite sign. Eddy statistics drawn from satellite altimetry data reveal that cyclonic and anticyclonic eddies occur with similar frequency and have similar average radii in the SEP. A satellite-based estimate of the surface-layer eddy heat flux divergence, while large in coastal regions, is small when averaged over the SEP, suggesting that eddies do not substantially contribute to cooling the surface layer of the SEP.
    Description: This work was supported by NOAA’s Climate Program Office and by NSF Grant OCE-0745508. Microwave OI SST data are produced by Remote Sensing Systems and sponsored by National Oceanographic Partnership Program (NOPP), the NASA Earth Science Physical Oceanography Program, and the NASA MEaSUREs DISCOVER Project.
    Keywords: Southeast Pacific ; Eddies ; Upper-ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and January. A NOAA vessel was not available, so this cruise was conducted on the chartered ship, Moana Wave, belonging to Stabbert Maritime. During the 2011 cruise on the Moana Wave to the ORS Stratus site, the primary activities were the recovery of the subsurface part of the Stratus 10 WHOI surface mooring, deployment of a new (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship by staff of the NOAA Earth System Research Laboratory (ESRL), and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. The Stratus 10 mooring had parted, and the surface buoy and upper part had been recovered earlier. Underway CTD (UCTD) profiles were collected along the track and during surveys dedicated to investigating eddy variability in the region. Surface drifters and subsurface floats were also launched along the track. The intent was also to visit a buoy for the Pacific tsunami warning system maintained by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). This DART (Deep- Ocean Assessment and Reporting of Tsunami) buoy had been deployed in December 2010.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA0900AR4320129
    Keywords: Moana Wave (Ship) Cruise Stratus 11 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the WHOTS-6 mooring and deployment of the seventh mooring (WHOTS-7). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-7 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 27 July and 4 August 2010. Operations began with deployment of the WHOTS-7 mooring on 28 July. This was followed by meteorological intercomparisons and CTDs. Recovery of WHOTS-6 took place on 2 Aug 2010. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129
    Keywords: Kilo Moana (Ship) Cruise KM1014 ; Ocean-atmosphere interaction ; Oceanographic buoys ; Marine meteorology
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually. A NOAA vessel was not available, so this cruise was conducted on the Melville, operated by the Scripps Institution of Oceanography. During the 2012 cruise on the Melville to the ORS Stratus site, the primary activities were the deployment of the Stratus 12 WHOI surface mooring, recovery of the previous (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Underway CTD (UCTD) profiles were collected along the track. Surface drifters and subsurface floats were also launched along the track.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129.
    Keywords: Melville (Ship) Cruise Stratus 12 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Ocean 119 (2014): 1068–1083, doi:10.1002/2013JC009470.
    Description: In the tropical eastern South Pacific the Stratus Ocean Reference Station (ORS) (∼20°S, 85.5°W) is located in the transition zone between the oxygen minimum zone (OMZ) and the well-oxygenated subtropical gyre. In February/March 2012, extremely anomalous water mass properties were observed in the thermocline at the Stratus ORS. The available eddy oxygen anomaly was −10.5 × 1016 µmol. This anomalous water was contained in an anticyclonic mode-water eddy crossing the mooring site. This eddy was absorbed at that time by an anticyclonic feature located south of the Stratus mooring. This was the largest water property anomaly observed at the mooring during the 13.5 month deployment period. The sea surface height anomaly (SSHA) of the strong mode-water eddy in February/March 2012 was weak, and while the lowest and highest SSHA were related to weak eddies, SSHA is found not to be sufficient to specify the eddy strength for subsurface-intensified eddies. Still, the anticyclonic eddy, and its related water mass characteristics, could be tracked backward in time in SSHA satellite data to a formation region in April 2011 off the Chilean coast. The resulting mean westward propagation velocity was 5.5 cm s−1. This extremely long-lived eddy carried the water characteristics from the near-coastal Chilean water to the open ocean. The water mass stayed isolated during the 11 month travel time due to high rotational speed of about 20 cm s−1 leading to almost zero oxygen in the subsurface layer of the anticyclonic mode-water eddy with indications of high primary production just below the mixed layer.
    Description: Financial support was received through Woods Hole Oceanographic Institution (R.A.W. and S.B.) and the GEOMAR (L.S. and R.C). The Stratus Ocean Reference Station is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program (NA09OAR4320129). This work is a contribution of the DFG-supported project SFB754 (http://www.sfb754.de) which is supported by the Deutsche Forschungsgemeinschaft.
    Description: 2014-08-12
    Keywords: Anticyclonic eddy ; Deoxygenation ; Stratus mooring ; Oxygen anomaly
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and December. Due to necessary repairs on the electric motors of the ship’s propulsion system, this year the cruise was delayed until January. During the 2009/2010 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were the recovery of the Stratus 9 WHOI surface mooring that had been deployed in October 2008, deployment of a new (Stratus 10) WHOI surface mooring at that site, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship by staff of the NOAA Earth System Research Laboratory (ESRL), and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Both underway CTD (UCTD) profiles and Vertical Microstructure Profiles (VMP) were collected along the track and during surveys dedicated to investigating eddy variability in the region. Surface drifters were also launched along the track. The intent was also to visit a buoy for the Pacific tsunami warning system maintained by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). This DART (Deep- Ocean Assessment and Reporting of Tsunami) buoy had been equipped with IMET sensors and subsurface oceanographic instruments, and a recovery and replacement of the IMET sensors was planned. However, the DART buoy broke free from its mooring on January 3rd and was recovered by the Chilean navy; the work done at that site during this cruise was the recovery of the bottom pressure unit.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Ronald H. Brown (Ship) Cruise RB10-01 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Rainfall data obtained from an optical rain gauge and a capacitive siphon rain gauge are analyzed and discussed. These sensors were developed for unattended use and are being considered for use at sea on ships and buoys.
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-87-09614
    Keywords: Marine meteorology ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Several different types of solar radiation air temperature shields are evaluated for use at sea on ships and buoys. They include three types of static or Thaller shields, two vane oriented shields, and two fan ventilated shields. A preliminary data analysis is presented and discussed.
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-87-09614
    Keywords: Marine meteorology ; Solar radiation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...