ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-02
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41428 , The Astrophysical Journal (ISSN 0004-637X; e-ISSN 1538-4357); Volume 838; No. 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-20
    Description: Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z 〉 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z 〈 or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43991 , The Astrophysical Journal (ISSN ISSN 0004-637X; e-ISSN 1538-4357); Volume 835; No. 1; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-11
    Description: The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from 60(sup +16)(sub -21)% for stars with previously detected cold dust to 8(sup +10)(sub -3)% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64720 , Astronomical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 155; 5; 194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between gamma-ray luminosity and spin-down power is consistent with a square root dependence. The gamma-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN28751 , Astronomy & Astrophysics; 575; A3; 88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: While supernova remnants (SNRs) are widely thought to be powerful cosmic-ray accelerators, indirect evidence comes from a small number of well-studied cases. Here we systematically determine the gamma-ray emission detected by the Fermi Large Area Telescope (LAT) from all known Galactic SNRs, disentangling them from the sea of cosmic-ray generated photons in the Galactic plane. Using LAT data we have characterized the 1-100 GeV emission in 279 regions containing SNRs, accounting for systematic uncertainties caused by source misattribution and instrumental response. We classified 30 sources as SNRs, using spatial overlap with the radio emission position. For all the remaining regions we evaluated upper limits on SNRs' emission. In the First Fermi-LAT SNR Catalog there is a study of the common characteristics of these SNRs, such as comparisons between GeV, radio and TeV quantities. We show that previously satisfactory models of SNRs' GeV emission no longer adequately describe the data. To address the question of cosmic ray (CR) origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength (MW) data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN51443 , EPJ Web of Conferences (e-ISSN 2100-014X); 136; 03009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We analyze dispersion measure(DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45943 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 841; 2; 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E〈10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT 0.2 keV) plus a hard spectrum with a power law of G ~ 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (〉3 solar mass) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (〈3 solar mass) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60569 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 838; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A (sub GWB) 〈 1.45 10 (exp -15) at a frequency of f=1 yr(exp -1) for a fiducial f (exp -2/3) power-law spectrum and with interpulsar correlations modeled. This is a factor of approximately 2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of G (sub mu) 〈 5.3 10(exp -11) - a factor of approximately 2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is omega (sub GWB)(f) h (exp 2) 〈 3.4 10 (exp -10).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN59128 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 859; 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr(exp -1) for a GWB from supermassive black hole binaries of A(sub gw) less than 1.5 x 10(exp -15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, OMEGA(sub gw) (f) h squared less than 4.2 x 10(exp -10). Our limit on the cosmic string GWB, OMEGA(sub gw) (f) h squared less than 2.2 x 10(exp -10), translates to a conservative limit on the cosmic string tension with G mu less than 3.3 x 10(exp -8), a factor of four better than the joint Planck and high-l cosmic microwave background data from other experiments.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50841 , GSFC-E-DAA-TN48302 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 821; 1; 13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: While supernova remnants (SNRs) are widely thought to be powerful cosmicray accelerators, indirect evidence comes from a small number of well-studied cases. Here we systematically determine the gamma-ray emission detected by the ermi Large Area Telescope (LAT) from all known Galactic SNRs, disentangling them from the sea of cosmic-ray generated photons in the Galactic plane. Using LAT data we have characterized the 1-100 GeV emission in 279 regions containing SNRs, accounting for systematic uncertainties caused by source misattribution and instrumental response. We classified 30 sources as SNRs, using spatial overlap with the radio emission position. For all the remaining regions we evaluated upper limits on SNRs' emission. In the First Fermi-LAT SNR Catalog there is a study of the common characteristics of these SNRs, such as comparisons between GeV, radio and TeV quantities. We show that previously satisfactory models of SNRs' GeV emission no longer adequately describe the data. To address the question of cosmic ray (CR) origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength (MW) data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN53436 , Roma International Conference on Astroparticle Physics (RICAP 16); Jun 21, 2016 - Jun 24, 2016; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...