ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-08-24
    Description: Sapwood characteristics, such as sapwood area as well as thermal and hydraulic conductivity, are linked to species-specific hydraulic function and resource allocation to water transport tissues (xylem). These characteristics are often unknown and thus a major source of uncertainty in sap flow data processing and transpiration estimates because bulk rather than species-specific values are usually applied. Here, we analyzed the sapwood characteristics of fifteen common tree species in eastern North America from different taxonomic (i.e., angiosperms and gymnosperms) and xylem porosity groups (i.e., tracheid-bearing, diffuse- or ring-porous species) and we assessed how uncertainties in sapwood characteristics involved in sap flow calculations are propagated in tree water use estimates. We quantified their sapwood area changes with stem diameter (allometric scaling) and thermal conductivity. We combined these measurements with species-specific values of wood density and hydraulic conductivity found in the literature and assessed the role of wood anatomy in orchestrating their covariation. Using an example sap flow dataset from tree species with different xylem porosity, we assessed the sensitivity of tree water use estimates to sapwood characteristics and their interactions. Angiosperms (ring- and diffuse-porous species), with specialized vessels for water transport, showed a steeper relationship (scaling) between tree stem diameter and sapwood area in comparison to gymnosperms (tracheid-bearing species). Gymnosperms (angiosperms) were characterized by lower (higher) wood density and higher (lower) sapwood moisture content, resulting in non-significant differences in sapwood thermal conductivity between taxonomic and xylem porosity groups. Clustering of species sapwood characteristics based on taxonomic or xylem porosity groups and constraining these parameters could facilitate more accurate sap flow calculations and tree water use estimates. When combined with an increasing number of sap flow observations, these findings should improve tree- and landscape-level transpiration estimates, leading to more robust partitioning of terrestrial water fluxes.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-09
    Description: Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic–boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June–August; 32 %), and fewer observations were available for autumn (September–October; 25 %), winter (December–February; 18 %), and spring (March–May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reysenbach, A. L., St John, E., Meneghin, J., Flores, G. E., Podar, M., Dombrowski, N., Spang, A., L'Haridon, S., Humphris, S. E., de Ronde, C. E. J., Caratori Tontini, F., Tivey, M., Stucker, V. K., Stewart, L. C., Diehl, A., & Bach, W. Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 117(51), (2020): 202019021, doi:10.1073/pnas.2019021117.
    Description: Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum “DPANN,” two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
    Description: We thank the captain and crew of the R/V Thompson and the engineers from Woods Hole Oceanographic Institution for the successful operation of ROV Jason. The project was funded by NSF grants OCE‐1558356 (Principal Investigator S.E.H.) and OCE-1558795 (Principal Investigator A.-L.R.). S.L. received a grant from the University of Brest to work in the A.-L.R. laboratory. A travel fund from Interridge enabled A.D. to participate on the R/V Thompson cruise. Funding for this work for C.E.J.d.R., F.C.T., V.K.S., and L.C.S. was provided by the New Zealand government. A.S. was supported by the Swedish Research Council (Vetenskapsrådet starting grant 2016-03559 to A.S.) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Dutch Research Council) Foundation of the Netherlands Organization for Scientific Research (Women In Science Excel [WISE] fellowship to A.S.). A.-L.R. and E.S.J. thank Rika Anderson for helpful methodological discussions and Sean Sylva for assistance in shipboard geochemical analysis.
    Keywords: Metagenomics ; Deep-sea hydrothermal ; Thermophiles ; Archaea ; Volcanics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.
    Description: The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
    Description: This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639).
    Keywords: Turbulence ; Wind shear ; Boundary layer ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., Miller, U., St Laurent, L., Ijichi, T., Weller, R. A., McRaven, L., Nylund, S., & Le Bel, D. Moored turbulence measurements using pulse-coherent doppler sonar. Journal of Atmospheric and Oceanic Technology, 38(9), (2021): 1621–1639, https://doi.org/10.1175/JTECH-D-21-0005.1.
    Description: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Description: This work was funded by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant NNX11AE84G), for SPURS-2 (NASA Grant NNX15AG20G), and for analysis (NASA Grant 80NSSC18K1494). Funding for early iterations of this project associated with the VOCALS project and Stratus 9 mooring was provided by NSF (Awards 0745508 and 0745442). Additional funding was provided by ONR Grant N000141812431 and NSF Award 1756839. The Stratus Ocean Reference Station is funded by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO FundRef Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. Microstructure measurements made from the glider were supported by NSF (Award 1129646).
    Keywords: Ocean ; Turbulence ; Atmosphere-ocean interaction ; Boundary layer ; Oceanic mixed layer ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: This directory contains BBTRE/DoMORE processed data (“all_BBTRE.mat” and “all_DoMORE.mat”) that was used to produce all figures in the above research letter. Each mat file has two structure arrays named “location” and “patch10”. The “location” array includes microstructure profile information used in this study (Table D1). The “patch10” array includes 10-m patch-wise parameter estimates used in this study (Table D2). Note that bulk averaged parameters can be constructed from parameters saved in “patch10” (see the above paper).
    Description: This project was funded by the Japan Society for the Promotion of Science.
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in St. Laurent, L., Ijichi, T., Merrifield, S. T., Shapiro, J., & Simmons, H. L. Turbulence and vorticity in the Wake of Palau. Oceanography, 32(4), (2019): 102-109, doi: 10.5670/oceanog.2019.416.
    Description: The interaction of flow with steep island and ridge topography at the Palau island chain leads to rich vorticity fields that generate a cascade of motions. The energy transfer to small scales removes energy from the large-scale mean flow of the equatorial current systems and feeds energy to the fine and microstructure scales where instability mechanisms lead to turbulence and dissipation. Until now, direct assessments of the turbulence associated with island wakes have received only minimal attention. Here, we examine data collected from an ocean glider equipped with microstructure sensors that flew in the island wake of Palau. We use a combination of submesoscale modeling and direct observation to quantify the relationship between vorticity and turbulence levels. We find that direct wind-driven mixing only accounts for about 10% of the observed turbulence levels, suggesting that most of the energy for mixing is extracted from the shear associated with the vorticity field in the island’s wake. Below the surface layer, enhanced turbulence correlates with the phase and magnitude of the relative vorticity and strain levels of the mesoscale flow.
    Description: We thank the Palau National Government for permission to carry out the research in Palau. We also thank the US Office of Naval Research for supporting this work. We especially thank Pat and Lori Colin of the Coral Reef Research Foundation and their team for accommodating our research team in Koror, Palau, and running vessel operations in support of glider deployments and recoveries. Sean Whelan of the Woods Hole Oceanographic Institution and Lance Braasch of Scripps Institution of Oceanography provided technical support in the field. Funding for the development of HYCOM has been provided by the National Ocean Partnership Program and the Office of Naval Research. Data assimilative products using HYCOM are funded by the US Navy. Computer time was made available by the Department of Defense High Performance Computing Modernization Program. The output is publicly available at https://www.hycom.org/.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Numerous coastal polynyas fringe the Antarctic continent and strongly influence the productivity of Antarctic shelf systems. Of the 46 Antarctic coastal polynyas documented in a recent study, the Amundsen Sea Polynya (ASP) stands out as having the highest net primary production per unit area. Incubation experiments suggest that this productivity is partly controlled by the availability of dissolved iron (dFe). As a first step toward understanding the iron supply of the ASP, we introduce four plausible sources of dFe and simulate their steady spatial distribution using conservative numerical tracers. The modeled distributions replicate important features from observations including dFe maxima at the bottom of deep troughs and enhanced concentrations near the ice shelf fronts. A perturbation experiment with an idealized drawdown mimicking summertime biological uptake and subsequent resupply suggests that glacial meltwater and sediment-derived dFe are the main contributors to the prebloom dFe inventory in the top 100 m of the ASP. The sediment-derived dFe depends strongly on the buoyancy-driven overturning circulation associated with the melting ice shelves (the “meltwater pump”) to add dFe to the upper 300 m of the water column. The results support the view that ice shelf melting plays an important direct and indirect role in the dFe supply and delivery to polynyas such as the ASP. The data are from a numerical model simulating the sea ice and ocean conditions in the Amundsen Sea over the period Jan. 1, 2006 to Dec. 31, 2013. The data files provide the daily averaged model fields during this period. The numerical model and experiment are thoroughly described in St-Laurent et al., J. Geophys. Res. Oceans, doi:10.1002/2017jc013162.
    Description: NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443657 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443604 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443315 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443569
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnston, T. M. S., Schonau, M. C., Paluszkiewicz, T., MacKinnon, J. A., Arbic, B. K., Colin, P. L., Alford, M. H., Andres, M., Centurioni, L., Graber, H. C., Helfrich, K. R., Hormann, V., Lermusiaux, P. F. J., Musgrave, R. C., Powell, B. S., Qiu, B., Rudnick, D. L., Simmons, H. L., St Laurent, L., Terrill, E. J., Trossman, D. S., Voet, G., Wijesekera, H. W., & Zeiden, K. L. Flow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific. Oceanography, 32(4), (2019): 10-21, doi: 10.5670/oceanog.2019.407.
    Description: Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.
    Description: We are grateful to Captains David Murline and Tom Desjardins and the crew of R/V Roger Revelle, and to the staff of the Coral Reef Research Foundation, for their help in carrying out the field program; to ONR for funding this work; and to FLEAT colleagues for their collaboration. We wish to thank the Bureau of Marine Resources, Ministry of Natural Resources, Environment and Tourism of the Palau National Government, and the Angaur, Kayangel, Koror, and Peleliu State Governments for the relevant permits to conduct this research in Palau’s waters.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...