ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
  • 2
    Publication Date: 2011-07-06
    Description: Drained thaw lake basins (DTLB) are the dominant land form of the Arctic coastal plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water table height due to microtopography. Areas in the flooded areas had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas of the landscape. Similarly, soil pore water concentrations of dissolved ferric iron (Fe III), organic carbon, and aromatic compounds were higher in flooded and low elevation areas. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2 production only responded to flooding in high elevation areas. Seasonal changes in the oxidation state of solid phase Fe minerals showed that significant dissimilatory Fe reduction occurred, especially in topographically low areas. This suite of results can all be attributed to the effect of water table on oxygen availability: flooded conditions promote anoxia, stimulating anaerobic processes, methanogenesis and Fe(III) reduction. Flooding also increased soil temperature, which might account for the higher N mineralization rates and dissolved P concentrations observed in flooded areas, though the latter could also have resulted from solubilization of Fe-P minerals under more reducing conditions. Overall, the results indicate that the microbial community is well-adapted for anaerobic respiration, in particular, dissimilatory Fe(III) reduction, and could have implications for some high Arctic areas where warming and flooding are likely consequences of climate change.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-03
    Description: Many invasions, like the wide-spread establishment of annual grasses and forbs in semi-arid shrublands, are associated with climate change. In order to predict ecosystem carbon (C) storage it is critical that we understand how invasion affects soil respiration (Rt). Because plants and microbes have different seasonal dynamics, determining the relative contribution of autotrophic (Ra) and heterotrophic (Rh) respiration provides critical insight into soil C processes. Using automated soil respiration measurements and root exclusion cores we evaluated the moisture and temperature sensitivity of Rt and Rh and calculated the contribution of Ra in native shrub and invaded areas. Invasion increased cumulative Rt by 40% from 695 (±51) g C m−2 under shrubs to 1050 g C m−2 (±44) in invaded areas. Cumulative Rh did not change but invasion altered the seasonal pattern of Rh. Throughout the season Rt and Rh responded positively to temperature increases when soils were wet and negatively when soils were dry. Invasion increased temperature sensitivity of Rt and Rh in wet soils and decreased temperature sensitivity in dry soils. The altered temperature sensitivity of invasives was attributed largely to differences in phenology. Early phenology of invasive grasses caused rapid Ra increases early in the season; late phenology of invasive forbs resulted in the surprising maintenance of diurnal Ra and Rh signals despite high temperatures and low soil moisture. Invasion extended the respiration season of the system. Ability of the invasive community to withstand high temperatures and drought could confer greater resilience if temperature and precipitation patterns in the region change. The high contribution of Ra by invasive annuals means ecosystem C storage will depend heavily on seasonal rainfall dynamics and productivity of invasive annuals. In semi-arid ecosystems even small scale changes in plant community composition alter Rt, Ra and Rh and should be considered when attempting to predict Rt.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2012-01-31
    Description: Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water-table height due to microtopography. The flooded portion of the basin had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas throughout the entire basin. Similarly, soil pore water concentrations of organic carbon and aromatic compounds were higher in flooded and low elevation areas. Dissolved ferric iron (Fe(III)) concentrations were higher in low elevation areas and responded to the flooding treatment in low areas, only. The high concentrations of soluble Fe(III) in soil pore water were explained by the presence of siderophores, which were much more concentrated in low elevation areas. All the aforementioned variables were correlated, showing that Fe(III) is solubilized in response to anoxic conditions. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas, but showed only subtle and/or seasonally dependent effects of flooding. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2 production only responded to flooding in high elevation areas. Seasonal changes in the oxidation state of solid phase Fe minerals showed that net Fe reduction occurred, especially in topographically low areas. The effects of Fe reduction were also seen in the topographic patterns of pH, as protons were consumed where this process was prevalent. This suite of results can all be attributed to the effect of water table on oxygen availability: flooded conditions promote anoxia, stimulating dissolution and reduction of Fe(III), and to some extent, methanogenesis. However, two lines of evidence indicated the inhibition of methanogenesis by alternative e- acceptors such as Fe(III) and humic substances: (1) ratios of CO2:CH4 evolved from anaerobic soil incubations and dissolved in soil pore water were high; (2) CH4 concentrations were negatively correlated with the oxidation state of the soluble Fe pool in both topographically high and low areas. A second set of results could be explained by increased soil temperature in the flooding treatment, which presumably arose from the increased thermal conductivity of the soil surface: higher N mineralization rates and dissolved P concentrations were observed in flooded areas. Overall, these results could have implications for C and nutrient cycling in high Arctic areas where warming and flooding are likely consequences of climate change.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2019-03-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-16
    Description: A rise in global air temperatures is expected to increase permafrost thaw and alter ecosystem carbon and water cycles in Arctic regions. The coupling between the soil temperature in the active layer (soil between the ground surface and permafrost) and air temperature is a key component in understanding permafrost stability and ecosystem change. Vegetation can affect soil temperature through a variety of mechanisms such as canopy shading, impacts on soil thermal conductivity via soil organic inputs or soil water uptake, albedo, and winter snow trapping. However, the relative importance of the vegetative effects on soil temperature is uncertain across large spatial scales and across different vegetative communities and ecosystem types. We compiled data on a Pan-Arctic scale pairing air and soil temperature with vegetation and ecosystem data to examine the impacts of vegetation on the decoupling of air and soil temperatures. We analyzed the summer thawing degree days, winter freezing degree days, and n factors (degree days soil/degree days air) from sites across the Arctic. Our results indicate that the decoupling between summer air and soil temperatures is more variable in boreal ecosystems than tundra ecosystems, and boreal ecosystems have lower winter n-factors than tundra ecosystems. Summer n-factors were more variable than winter n-factors, and had high variability within study sites. Vegetative and ecosystem characteristics can be key drivers of spatial and temporal variability in active layer soil temperature, particularly during the summer. Quantifying the impacts of vegetation on active layer temperature is critical to understanding how changes in vegetation under climate change can further affect permafrost stability and soil temperature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-20
    Description: The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-09
    Description: Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic–boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June–August; 32 %), and fewer observations were available for autumn (September–October; 25 %), winter (December–February; 18 %), and spring (March–May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...