ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-10-08
    Description: Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barnes, Jason W -- Brown, Robert H -- Turtle, Elizabeth P -- McEwen, Alfred S -- Lorenz, Ralph D -- Janssen, Michael -- Schaller, Emily L -- Brown, Michael E -- Buratti, Bonnie J -- Sotin, Christophe -- Griffith, Caitlin -- Clark, Roger -- Perry, Jason -- Fussner, Stephanie -- Barbara, John -- West, Richard -- Elachi, Charles -- Bouchez, Antonin H -- Roe, Henry G -- Baines, Kevin H -- Bellucci, Giancarlo -- Bibring, Jean-Pierre -- Capaccioni, Fabrizio -- Cerroni, Priscilla -- Combes, Michel -- Coradini, Angioletta -- Cruikshank, Dale P -- Drossart, Pierre -- Formisano, Vittorio -- Jaumann, Ralf -- Langevin, Yves -- Matson, Dennis L -- McCord, Thomas B -- Nicholson, Phillip D -- Sicardy, Bruno -- New York, N.Y. -- Science. 2005 Oct 7;310(5745):92-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. jbarnes@lpl.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16210535" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Dry Ice ; Extraterrestrial Environment ; Ice ; Methane ; *Saturn ; Spacecraft ; Spectrum Analysis ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015989, doi:10.1029/2019JC015989.
    Description: Relatively minor amounts of methane, a potent greenhouse gas, are currently emitted from the oceans to the atmosphere, but such methane emissions have been hypothesized to increase as oceans warm. Here, we investigate the source, distribution, and fate of methane released from the upper continental slope of the U.S. Mid‐Atlantic Bight, where hundreds of gas seeps have been discovered between the shelf break and ~1,600 m water depth. Using physical, chemical, and isotopic analyses, we identify two main sources of methane in the water column: seafloor gas seeps and in situ aerobic methanogenesis which primarily occurs at 100–200 m depth in the water column. Stable isotopic analyses reveal that water samples collected at all depths were significantly impacted by aerobic methane oxidation, the dominant methane sink in this region, with the average fraction of methane oxidized being 50%. Due to methane oxidation in the deeper water column, below 200 m depth, surface concentrations of methane are influenced more by methane sources found near the surface (0–10 m depth) and in the subsurface (10–200 m depth), rather than seafloor emissions at greater depths.
    Description: This research was supported by DOE Grant (DE‐FE0028980) to J. K. and by DOE‐USGS Interagency Agreement DE‐FE0026195.
    Description: 2020-10-04
    Keywords: Methane ; Ocean ; Isotopes ; Gas seeps ; Mid Atlantic bight ; Oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.
    Description: Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
    Description: This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.
    Description: 2021-06-23
    Keywords: Radiocarbon ; Methane ; DIC ; Ocean acidification ; Climate change ; U.S Mid-Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Gas seepages along the Ionian coast of the northwestern Peloponnesus (Greece), at Killini, Katakolo, and Kaiafas reflect deep hydrocarbon-generation processes and represent a real hazard for humans and buildings. Methane microseepage, gas concentration in offshore and onshore vents, and gas dissolved in water springs, including the isotopic analysis of methane, have shown that the seeps are caused by thermogenic methane that had accumulated in Mesozoic limestone and had migrated upward through faults, or zones of weakness, induced by salt diapirism. A link between local seismicity and salt tectonics is suggested by the analyses of hypocenter distribution. Methane acts as a carrier gas for hydrogen sulfide produced by thermal sulfate reduction and/or thermal decomposition of sulfur compounds in kerogen or oil. Methane seeps in potentially explosive amounts, and hydrogen sulfide is over the levels necessary to induce toxicological diseases and lethal effects.
    Description: Published
    Description: 701-713
    Description: reserved
    Keywords: Methane ; seepage ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2071123 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-19
    Description: During the oceanographic cruises (T95/10/04 DO, B/I Tohalli) which were carried out during the period between the 2nd-6nd of november 1995, along the from the coast at 81~'20'W and between 01~'10' to 03~'20'S, 17 differents phytoplankton station, were surveyed for each station vertical drags were done in a water colum of 50 m depth by using of 47,5 cm diameter, 130 cm long and 55~km of light ned. The cualitative and quantitative plankton analysis shown that the studied area correspond to biological fertility region with Rhizosolenia styliformis, Coscinodiscus marginatus an Ceratium tripos as the dominant spacies. An area of phytoplankton activity is identifie as of having an outcrop origine (station 7, 8 and 9). The station that presented the major plankton density was the one numbered 23 (80~'20'W and 03~'05'S) with 4,7 x 105 cel.m-3 likely due to the nutrients that flow into from Guayas river while the minimun concentrations were found to happen at stations 10 and 20 with 9,9 x 103 y 4,2 x 103 cel.m-3 respectively. The zone showed present a total of 37 families and 115 species.
    Description: Published
    Description: Rhizosolenia styliformis; Coscinodiscus marginatus; Ceratium tripos
    Keywords: Phytoplankton ; Geographical distribution ; Continental shelves ; Phytoplankton ; Geographical distribution ; Continental shelves
    Repository Name: AquaDocs
    Type: Journal Contribution
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Instituto Oceanográfico de la Armada, Guayaquil, Ecuador
    Publication Date: 2021-05-19
    Description: Este trabajo presenta los resultados de la distribución de la biomasa y composición del fitoplancton y zooplancton en el frente ecuatorial, cuya presencia caracteriza las condiciones consideradas como "normal" para el sistema de circulación oceánica del Pacífico Tropical.
    Description: Incluye ref.bibl., ilus.
    Description: Published
    Keywords: Distribution ; Biomass ; Phytoplankton ; Zooplankton ; Composition ; Distribution ; Biomass ; Cruises ; Phytoplankton ; Zooplankton
    Repository Name: AquaDocs
    Type: Journal Contribution
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-19
    Description: Twelve laboratory experiments to evaluate the egestion in short time periods at the herbivorous copepod Eucalanus subtenuis, were carried out with the aim to obtain data about the morphometry, volume, faeces production rate and coprophagy index, as well as to detect some feeding strategy. Two feeding treatments with different phytoplankton size classes (measured as chlorophyll a concentration) were applied to the copepod: 0 -25 µm (pico and nanophytoplankton) and 25-85 µm (microphytoplankton). The food source was obtained from the surface water in the Caribbean central coast region, between February and May 2001. At copepods with mean total size of 1855.45 +/- 20.50 µm, faeces length fluctuated between 66.66 and 315 µm, being longer when copepods fed with smaller phytoplankton size. The faeces diameter ranged from 12.5 to 58.3 µm and the volume from 1.3x104 and 6.3x105 µm3. The egested faeces fluctuated between 0 and 1.52 faeces cop-1 and 0 and 2.10 faeces cop-1, for the two size feeding treatments (0-25 µm and 25-85 µm), respectively, without dependence of the phytoplankton concentration. At treatments with smaller size phytoplankton, the faeces production rate was 1.65 faeces cop-1 h-1 and 2.04 faeces cop-1 h-1 for longer size phytoplankton, without significant differences between treatments, that is, the faeces rate production doesn’t depend on food concentration and size. Copepods fed with smaller size phytoplankton had a mean tolerated coprophagy index of 20.02%, while those fed with longer phytoplankton was of 36.41%, responding to a more food active search that increase the finding probability in the egestion bottle. Globally, E. subtenuis is a herbivorous species, but considering the results, could be a detritivorous copepod product of the coprophagy and a great adaptability to select and use the food.
    Description: Published
    Description: Faeces, Copepod
    Keywords: Phytoplankton ; Phytoplankton ; Upwelling ; Marine crustaceans
    Repository Name: AquaDocs
    Type: Journal Contribution
    Format: pp.193-209
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 942-951, doi:10.1016/j.marpetgeo.2008.01.016.
    Description: Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum δ13C dissolved inorganic carbon (DIC) values of −55.9‰ to −64.8‰ at the sulfate–methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the δ13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.
    Description: This work was supported by DOE’s National Energy Technology Laboratory, the Office of Naval Research, and the Naval Research Laboratory. J.W.P was supported by a USGS Mendenhall Postdoctoral Research Fellowship Program during preparation of this manuscript.
    Keywords: Gas hydrate ; Methane ; Anaerobic methane oxidation ; Sulfate ; Brine ; Gulf of Mexico
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 72 (2008): 2005-2023, doi:10.1016/j.gca.2008.01.025.
    Description: A unique dataset from paired low- and high-temperature vents at 9°50’N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50’N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ~10‰ in values of δ13C of CH4, and by ~0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 = -20.1 ± 1.2‰, δ13C of CO2 = -4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box-model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50’N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.
    Description: This work was supported by NSF grants from the division of Ocean Science’s MG&G and RIDGE programs.
    Keywords: Methane ; Carbon dioxide ; Diffuse fluid ; Hydrothermal vents ; Methanogenesis ; Methane oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-21
    Description: Seafloor hydrothermalism plays a critical role in fundamental interactions between geochemical and biological processes in the deep ocean. A significant number of hydrothermal vents are hypothesized to exist, but many of these remain undiscovered due in part to the difficulty of detecting hydrothermalism using standard sensors on rosettes towed in the water column or robotic platforms performing surveys. Here, we use in situ methane sensors to complement standard sensing technology for hydrothermalism discovery and compare sensing equipment on a towed rosette and autonomous underwater vehicle (AUV) during a 17 km long transect in the Northern Guaymas Basin. This transect spatially intersected with a known hydrothermally active venting site. These data show that methane signaled possible hydrothermal activity 1.5-3 km laterally (100-150m vertically) from a known vent. Methane as a signal for hydrothermalism performed similarly to standard turbidity sensors (plume detection 2.2-3.3 km from reference source), and more sensitively and clearly than temperature, salinity, and oxygen instruments which readily respond to physical mixing in background seawater. We additionally introduce change-point detection algorithms---streaming cross-correlation and regime identification---as a means of real-time hydrothermalism discovery and discuss related data monitoring technologies that could be used in planning, executing, and monitoring explorative surveys for hydrothermalism.
    Description: NSF OCE OTIC: #1842053 Woods Hole Oceanographic Institution: Innovative Technology Award NOAA Ocean Exploration: #NA18OAR0110354 Schmidt Marine Technology Partners: #G-21-62431 NASA: #NNX17AB31G NSF OCE: #0838107 Gordon and Betty Moore Foundation: #9208 NDSEG: Graduate Fellowship MIT Martin Family Society of Fellows: Graduate Fellowship Microsoft: Graduate Research Fellowship DOE/National Nuclear Security Administration: #DE-NA000392 MIT EAPS: Houghton Fund
    Keywords: Methane ; In situ instrumentation ; Hydrothermalism ; Deep sea exploration ; Eater mass classification ; Science-informed models ; AUV SENTRY ; Decision-making infrastructure
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...