ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-04
    Description: In this paper, a new issue that very low relative humidity observations exist in a deeper atmosphere layer in the low- and mid-troposphere is studied on the basis of the global radiosonde observations from December 2008 to November 2009, and the humidity retrieval productions from Formosa Satellite mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC, referred to as COSMIC hereafter) in the same period. Results show that these extremely dry relative humidity observations are considerable universal in the worldwide operational radiosonde data. Globally, the annual average occurrence probability of the extremely dry relative humidity is of 4.2%. These measurements usually occur between 20° and 40° latitudes in both Northern and Southern Hemispheres, and in the height from 700 to 450 hPa in the low- and mid-troposphere. Winter and spring are the favoured seasons for these extremely dry humidity observations, with the maximum ratio of 9.53% in the Northern Hemisphere and 16.82% in the Southern Hemisphere. The phenomenon is mainly related to the performance of the radiosonde humidity sensor and the cloud types traversed by the radiosonde balloon. These extremely low relative humidity observations are erroneous, which cannot represent the real atmospheric status, and are likely caused by the failure of humidity sensor. However, these observations have been archived as the formal data. It will affect the reliability of numerical weather prediction, the analysis of weather and climate, if the quality control procedure is not applied.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-21
    Description: This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997–2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-18
    Description: Using a combination of ozonesonde data and numerical simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS), the trend of tropospheric ozone (O3) during 2002–2010 over Beijing was investigated. Tropospheric ozone over Beijing shows a winter minimum and a broad summer maximum with a clear positive trend in the maximum summer ozone concentration over the last decade. The observed significant trend of tropospheric column ozone is mainly caused by photochemical production (3.1% yr−1 for a mean level of 52 DU). This trend is close to the significant trend of partial column ozone in the lower troposphere (0–3 km) resulting from the enhanced photochemical production during summer (3.0% yr−1 for a mean level of 23 DU). Analysis of the CLaMS simulation shows that transport rather than chemistry drives most of the seasonality of tropospheric ozone. However, dynamical processes alone cannot explain the trend of tropospheric ozone in the observational data. Clearly enhanced ozone values and a negative vertical ozone gradient in the lower troposphere in the observational data emphasize the importance of photochemistry within the troposphere during spring and summer, and suggest that the photochemistry within the troposphere significantly contributes to the tropospheric ozone trend over Beijing during the last decade.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-22
    Description: We conducted an intensive field campaign at the summit of Mt. Tai (36.26° N, 117.11° E, 1534 m above sea level), Shandong Province, located at the center of central East China, during the period 28 May to 30 June 2006, to study seasonal maxima of regional air pollution with respect to ozone (O3) and aerosols. The specific objectives, campaign design, and major findings are summarized. High concentrations of O3 and its precursors, and aerosols, were detected and studied in the context of annual variations. Most importantly, we identified that emissions from regional-scale open crop residue burning after the harvesting of winter wheat, together with photochemical aging, strongly increased the concentrations of O3, aerosols, and primary pollutants in this month of year. Studies of in situ photochemical activity, regional source attribution of O3, O3–aerosol interactions, validation of satellite observations of tropospheric NO2, behaviors of volatile organic compounds and organic/inorganic aerosol species, loss rates of black carbon (BC), and instrument inter-comparisons are also summarized. The observed BC levels must have a strong impact on the regional climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-10
    Description: Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers observed during aqueous phase processing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-14
    Description: The photo-oxidation chemistry of isoprene (ISOP; C5H8) was studied in a continuous-flow chamber under conditions such that the reactions of the isoprene-derived peroxyl radicals (RO2) were dominated by the hydroperoxyl (HO2) pathway. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+ reagent ions was used for product analysis. The products methyl vinyl ketone (MVK; C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent ions. The MVK and MACR yields via the HO2 pathway were (3.8 ± 1.3)% and (2.5 ± 0.9)%, respectively, at +25 °C and 〈 2% relative humidity. The respective yields were (41.4 ± 5.5)% and (29.6 ± 4.2)% via the NO pathway. Production of MVK and MACR via the HO2 pathway implies concomitant production of hydroxyl ((6.3 ± 2.1)%) and hydroperoxyl ((6.3 ± 2.1)%) radicals, meaning a HOx recycling of (12.6 ± 4.2)% given that HO2 was both a reactant and product. Other isoprene oxidation products, believed to be mostly organic hydroperoxides, also contributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and MACR product ions for HO2-dominant conditions. These products were selectively removed from the gas phase by placement of a cold trap (−40 °C) inline prior to the PTR-TOF-MS. When incorporated into regional and global chemical transport models, the yields of MVK and MACR and the concomitant HOx recycling reported in this study can improve the accuracy of the simulation of the HO2 reaction pathway of isoprene, which is believed to be the fate of approximately half of atmospherically produced isoprene-derived peroxy radicals on a global scale.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-01
    Description: The Multi-Angle Imaging Spectro-Radiometer (MISR) instrument on NASA's Terra satellite can provide more reliable Aerosol Optical Depth (AOD, τ) and more particle information, such as constraints on particle size (Angström exponent or ANG, α), particle shape, and single-scattering albedo (SSA, ω), than many other satellite instruments. However, MISR's ability to retrieve aerosol properties is weakened at low AOD levels. When aerosol-type information content is low, many candidate aerosol mixtures can match the observed radiances. We propose an algorithm to improve MISR aerosol retrievals by constraining MISR mixtures' ANG and absorbing AOD (AAOD) with Goddard Chemistry Aerosol Radiation and Transport (GOCART) model-simulated aerosol properties. To demonstrate this approach, we calculated MISR aerosol optical properties over the contiguous US from 2006 to 2009. Sensitivities associated with the thresholds of MISR-GOCART differences were analyzed according to the agreement between our results (AOD, ANG, and AAOD) and AErosol RObotic NETwork (AERONET) observations. Overall, our AOD has a good agreement with AERONET because the MISR AOD retrieval is not sensitive to different mixtures under many retrieval conditions. The correlation coefficient (r) between our ANG and AERONET improves to 0.45 from 0.29 for the MISR Version 22 standard product and 0.43 for GOCART when all data points are included. However, when only cases having AOD 〉 0.2, the MISR product itself has r ~ 0.40, and when only AOD 〉 0.2 and the best-fitting mixture are considered, r ~ 0.49. So as expected, the ANG improvement occurs primarily when the model constraint is applied in cases where the particle type information content of the MISR radiances is low. Regression analysis for AAOD shows that MISR Version 22 and GOCART misestimate AERONET by a ratio (mean retrieved AAOD to mean AERONET AAOD) of 0.5; our method improves this ratio to 0.74. Large discrepancies are found through an inter-comparison of the spatial-temporal patterns of MISR, GOCART, and our adjusted aerosol optical properties. We attribute these differences to (1) GOCART underestimations of AOD and ANG in polluted regions due to the emissions inventories used, and not considering the fine particles such as nitrate, (2) a lack of certain aerosol mixtures in the Version 22 algorithm climatology, (3) a lack of sensitivity in the MISR radiances to particle type under some conditions, and (4) parameters and thresholds used in our method.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-08-03
    Description: Owing to recent industrialization, Central East China has become a significant source of air pollutants. To examine the processes controlling the chemistry and transport of tropospheric ozone, we performed on-line measurements of non-methane volatile organic compounds (NMVOCs) as part of an intensive field campaign at Mount Tai, China, in June 2006 (MTX2006), using proton transfer reaction mass spectrometry (PTR-MS). Temporal variations of NMVOCs were recorded in mass-scan mode from m/z17 to m/z 300 during 12–30 June 2006. More than thirty kinds of NMVOCs were detected up to m/z 160, including alkenes, aromatics, alcohols, aldehydes, and ketones. In combination with non-methane hydrocarbon data obtained by a gas chromatography with flame ionization detection, it was found that oxygenated VOCs were the predominant NMVOCs. Diurnal variations depending mainly on local photochemistry were observed during 24–28 June. During the night of 12 June, we observed an episode of high NMVOCs concentrations attributed to the burning of agricultural biomass. The ΔNMVOCs/ΔCO ratios derived by PTR-MS measurements for this episode (with biomass burning (BB) plume) and during 16–23 June (without BB plume) are compared to emission ratios from various types of biomass burning as reviewed by Andreae and Merlet (2001) and to ratios recently measured by PTR-MS in tropical forests (Karl et al., 2007) and at urban sites (Warneke et al., 2007).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-20
    Description: Understanding the relationship between black carbon (BC) and carbon monoxide (CO) will help improve BC emission inventories and the evaluation of global/regional climate forcing effects. In the present work, the BC (PM1) mass concentration and CO mixing ratio were continuously measured at a high-altitude background station on the summit of Mt. Huang (30.16° N, 118.26° E, 1840 m a.s.l.). Annual mean BC mass concentration was 1004.5 ± 895.5 ng m−3 with maxima in spring and autumn, and annual mean CO mixing ratio was 424.1 ± 159.2 ppbv. A large increase of CO was observed in the cold season, implying the contribution from the large-scale domestic coal/biofuel combustion for heating. The BC-CO relationship was found to show different seasonal features but strong positive correlation (R〉0.8). In Mt. Huang area, the ΔBC/ΔCO ratio showed unimodal diurnal variations and had a maximum during the day (09:00–17:00 LST) and minimum at night (21:00–04:00 LST) in all seasons, indicating the impact of planetary boundary layer and the intrusion of clean air masses from the high troposphere. Back trajectory cluster analysis showed that the ΔBC/ΔCO ratio of plumes from the Eastern China (Jiangsu, Zhejiang provinces and Shanghai) was 8.8 ± 0.9 ng m−3 ppbv−1. Transportation and industry were deemed as controlling factors of the BC-CO relationship in this region. The ΔBC/ΔCO ratios for air masses from Northern China (Anhui, Henan, Shanxi and Shandong provinces) and southern China (Jiangxi, Fujian and Hunan provinces) were quite similar with mean values of 6.5 ± 0.4 and 6.5 ± 0.2 ng m−3 ppbv−1 respectively. The case studies combined with satellite observations demonstrated that the ΔBC/ΔCO ratio for biomass burning (BB) plumes were 10.3 ± 0.3 and 11.6 ± 0.5ng m−3 ppbv−1, significantly higher than those during non-BB impacted periods. The loss of BC during transport was also investigated on the basis of the ΔBC/ΔCO-RH (relative humidity) relationship along air mass pathways. The results showed that BC particles from Eastern China area was much more easily removed from atmosphere than other inland regions due to the higher RH along transport pathway, implying the importance of chemical compositions and mixing states on BC residence time in the atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-05
    Description: Ship-based Multi-Axis Differential Optical Absorption Spectroscopy measurements of iodine monoxide (IO) and atmospheric and seawater Gas Chromatography-Mass Spectrometer observations of methyl iodide (CH3I) were made in the Eastern Pacific marine boundary layer during April 2010 as a part of the HaloCarbon Air Sea Transect-Pacific (HaloCAST-P) scientific cruise. The presence of IO in the open ocean environment was confirmed, with a maximum differential slant column density of 5 × 1013 molecules cm−2 along the 1° elevation angle (corresponding to approximately 1 pptv) measured in the oligotrophic region of the Southeastern Pacific. Such low IO mixing ratios and their observed geographical distribution are inconsistent with satellite estimates and with previous understanding of oceanic sources of iodine. A strong correlation was observed between reactive iodine (defined as IO + I) and CH3I, suggesting common sources. In situ measurements of meteorological parameters and physical ocean variables, along with satellite-based observations of Chlorophyll a (Chl a) and Chromophoric Dissolved Organic Matter (CDOM) were used to gain insight into the possible sources of iodine in this remote environment. Surprisingly, reactive iodine showed a negative correlation (〉 99% confidence) to Chl a and CDOM across the cruise transect. However, a significant positive correlation (〉 99% confidence) with sea surface temperature (SST) and salinity instead suggests a widespread abiotic source related to the availability of aqueous iodine and to temperature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...