ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-01
    Description: Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-12
    Description: Nitrogen oxides (NO x ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NO y ), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 x 10 6 to 1.6 x 10 6 cm –3 . The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-06-01
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-13
    Description: During the 2013 Southern Oxidant and Aerosol Study, aerosol mass spectrometer measurements of submicron mass and single particles were taken at Look Rock, Tennessee. Their concentrations increased during multiday stagnation events characterized by low wind, little rain, and increased daytime isoprene emissions. Organic mass (OM) sources were apportioned as 42% “vehicle-related” and 54% biogenic secondary organic aerosol (bSOA), with the latter including “sulfate-related bSOA” that correlated to sulfate (r = 0.72) and “nitrate-related bSOA” that correlated to nitrate (r = 0.65). Single-particle mass spectra showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r 〉 0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, “sulfate-related bSOA” was on particles with high sulfate, and “nitrate-related bSOA” was on all particles. The similarity of the m/z spectra (cosine similarity = 0.97) and the time series correlation (r = 0.80) of the “sulfate-related bSOA” to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto particles that contain sulfate from power plants. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-14
    Description: The photo-oxidation chemistry of isoprene (ISOP; C5H8) was studied in a continuous-flow chamber under conditions such that the reactions of the isoprene-derived peroxyl radicals (RO2) were dominated by the hydroperoxyl (HO2) pathway. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+ reagent ions was used for product analysis. The products methyl vinyl ketone (MVK; C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent ions. The MVK and MACR yields via the HO2 pathway were (3.8 ± 1.3)% and (2.5 ± 0.9)%, respectively, at +25 °C and 〈 2% relative humidity. The respective yields were (41.4 ± 5.5)% and (29.6 ± 4.2)% via the NO pathway. Production of MVK and MACR via the HO2 pathway implies concomitant production of hydroxyl ((6.3 ± 2.1)%) and hydroperoxyl ((6.3 ± 2.1)%) radicals, meaning a HOx recycling of (12.6 ± 4.2)% given that HO2 was both a reactant and product. Other isoprene oxidation products, believed to be mostly organic hydroperoxides, also contributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and MACR product ions for HO2-dominant conditions. These products were selectively removed from the gas phase by placement of a cold trap (−40 °C) inline prior to the PTR-TOF-MS. When incorporated into regional and global chemical transport models, the yields of MVK and MACR and the concomitant HOx recycling reported in this study can improve the accuracy of the simulation of the HO2 reaction pathway of isoprene, which is believed to be the fate of approximately half of atmospherically produced isoprene-derived peroxy radicals on a global scale.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-24
    Description: Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS) and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge ($m/z$) ratios of 73 (0.05 mg m−2 hr−1 in 2005; 0.03 mg m−2 hr−1 in 2007) and 153 (5 μg m−2 hr−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene or methyl salicylate, respectively, were also observed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-03
    Description: The influence of second-generation products on the particle mass yield of β-caryophyllene ozonolysis was systematically tested and quantified. The approach was to vary the relative concentrations of first- and second-generation products by adjusting the concentration of ozone while observing changes in particle mass yield. For all wall-loss corrected organic particle mass concentrations Morg of this study (0.5 〈 Morg 〈 230 μg m−3), the data show that the particle-phase organic material was composed for the most part of second-generation products. For 0.5〈 Morg 〈 10 μg m−3, a range which overlaps with atmospheric concentrations, the particle mass yield was 10 to 20% and was not sensitive to ozone exposure, implying that the constituent molecules were rapidly produced at all investigated ozone exposures. In contrast, for Morg 〉 10 μg m−3 the particle mass yield increased to as high as 70% for the ultimate yield corresponding to the greatest ozone exposures. These differing dependencies on ozone exposure under different regimes of Morg are explained by a combination of the ozonolysis lifetimes of the first-generation products and the volatility distribution of the resulting second-generation products. First-generation products that have short lifetimes produce low-volatility second-generation products whereas first-generation products that have long lifetimes produce high-volatility second-generation products. The ultimate particle mass yield was defined by mass-based stoichiometric yields αi of α0 = 0.17 ± 0.05, α1 = 0.11 ± 0.17, and α2 = 1.03 ± 0.30 for corresponding saturation concentrations of 1, 10, and 100 μg m−3. Terms α0 and α1 had low sensitivity to the investigated range of ozone exposure whereas term α2 increased from 0.32 ± 0.13 to 1.03 ± 0.30 as the ozone exposure was increased. These findings potentially allow for simplified yet accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yields of certain classes of biogenic compounds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-01-07
    Description: The cloud condensation nuclei (CCN) properties of ammonium sulfate particles mixed with organic material condensed during the hydroxyl-radical-initiated photooxidation of isoprene (C5H8) were investigated in the continuous-flow Harvard Environmental Chamber. CCN activation curves were measured for organic particle mass concentrations of 0.5 to 10.0 μg m−3, NOx concentrations from under 0.4 ppbv up to 38 ppbv, particle mobility diameters from 70 to 150 nm, and thermodenuder temperatures from 25 to 100 °C. At 25 °C, the observed CCN activation curves were accurately described by a Köhler model having two internally mixed components, namely ammonium sulfate and secondary organic material. The modeled physicochemical parameters of the organic material were equivalent to an effective hygroscopicity parameter κORG of 0.10±0.03, regardless of the C5H8:NOx concentration ratio for the span of 〉200:0.4 to 50:38 (ppbv:ppbv). The volatilization curves (i.e., plots of the residual organic volume fraction against temperature) were also similar for the span of investigated C5H8:NOx ratios, suggesting a broad similarity of particle chemical composition. This suggestion was supported by limited variance at 25 °C among the particle mass spectra. For example, the signal intensity at m/z 44 (which can result from the fragmentation of oxidized molecules believed to affect hygroscopicity and CCN properties) varied weakly from 6 to 9% across the range of investigated conditions. In contradistinction to the results for 25 °C, conditioning up to 100 °C in the thermodenuder significantly reduced CCN activity. The altered CCN activity might be explained by chemical reactions (e.g., decomposition or oligomerization) of the secondary organic material at elevated temperatures. The study's results at 25 °C, in conjunction with the results of other chamber and field studies for a diverse range of conditions, suggest that a value of 0.10±0.05 for κORG is representative of both anthropogenic and biogenic secondary organic material. This finding supports the use of κORG as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-21
    Description: The photo-oxidation chemistry of isoprene (C5H8) was studied in a continuous-flow chamber under conditions such that the reactions of isoprene-derived peroxyl radicals (RO2) were dominated by hydroperoxyl (HO2) pathway. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+ reagent ions was used for product analysis. The products methyl vinyl ketone (MVK; C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent ions. The MVK and MACR yields were 4.3 ± 0.4% and 3.2 ± 0.3%, respectively, for HO2-dominant conditions at +25 °C and 〈 2% relative humidity. The respective yields were 41.1 ± 2.2% and 28.8 ± 1.2% for NO-dominant conditions. The yields for HO2-dominant conditions imply a concomitant yield (i.e., recycling factor) of hydrogen oxide radicals (HOx) of 15 ± 0.7% from the reaction of isoprene-derived RO2 with HO2. Other isoprene oxidation products, believed to be organic hydroperoxides, also contributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and MACR product ions, and these products were selectively removed from the gas phase using a variable temperature cold trap (−40 °C) in front of the PTR-TOF-MS. These hydroperoxide products were absent for NO-dominant conditions. When incorporated into regional and global chemical transport models, the yields of MVK and MACR and concomitant HOx yields reported in this study will improve the accuracy of simulations of the HO2 reaction pathway of isoprene, which has been shown to make a significant contribution to the total reactivity of isoprene-derived RO2 radicals on a global scale.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-14
    Description: The influence of second-generation products on the particle mass yield of β-caryophyllene ozonolysis was systematically tested and quantified. The approach was to vary the relative concentrations of first- and second-generation products by controlling ozone concentration, while observing the change in particle mass yield. For all organic particle mass concentrations Morg of this study (0.5 〈 Morg 〈 230 μg m−3), the data show that particle-phase organic material was in large part composed of second-generation products. For 0.5 〈 Morg 10 μg m−3 the particle mass yield increased with ozone exposure. These different dependencies on ozone exposure with M org are explained by a combination of the ozonolysis lifetimes of the first-generation products and the volatility distribution of the resulting second-generation products. First-generation products that have short lifetimes produce low-volatility second-generation products whereas first-generation products that have long lifetimes produce high-volatility second-generation products. The ultimate particle mass yield was defined by mass-based stoichiometric yields α0 = 0.17 ± 0.05, α1 = 0.11 ± 0.17, and α2 = 1.03 ± 0.30 for corresponding saturation concentrations of 1, 10, and 100 μg m−3. Terms α0 and α1 had low sensitivity to the investigated range of ozone exposure whereas term α2 increased from 0.32 ± 0.13 to 1.03 ± 0.30 as the ozone exposure was increased. These findings potentially allow for simplified yet nevertheless accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yield of certain classes of biogenic compounds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...