ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley  (9)
  • American Chemical Society
  • 2020-2024  (9)
  • 1980-1984
  • 1970-1974
  • 1960-1964
  • 1955-1959
  • 2024  (9)
Sammlung
Erscheinungszeitraum
  • 2020-2024  (9)
  • 1980-1984
  • 1970-1974
  • 1960-1964
  • 1955-1959
Jahr
  • 1
    Publikationsdatum: 2024-02-22
    Beschreibung: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is similar to 60% larger in models (-0.72 vs. -0.44 PgC year-1, 1998-2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year-1 in observational product and +0.54 PgCO2-e year-1 in model median) and CH4 (+0.21 PgCO2-e year-1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%-60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate. The coastal ocean regulates greenhouse gases. It acts as a sink of carbon dioxide (CO2) but also releases nitrous oxide (N2O) and methane (CH4) into the atmosphere. This synthesis contributes to the second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2) and provides a comprehensive view of the coastal air-sea fluxes of these three greenhouse gases at the global scale. We use a multi-faceted approach combining gap-filled observation-based products and ocean biogeochemical models. We show that the global coastal ocean is a net sink of CO2 in both observational products and models, but the coastal uptake of CO2 is similar to 60% larger in models than in observation-based products due to model-product differences in seasonality. The coastal CO2 sink is strengthening but the magnitude of this strengthening is poorly constrained. We also find that the coastal emissions of N2O and CH4 counteract a substantial part of the effect of coastal CO2 uptake in the atmospheric radiative balance (by 30%-60% in CO2-equivalents), highlighting the need to consider these three gases together to understand the influence of the coastal ocean on climate. We synthesize air-sea fluxes of CO2, nitrous oxide and methane in the global coastal ocean using observation-based products and ocean models The coastal ocean CO2 sink is 60% larger in ocean models than in observation-based products due to systematic differences in seasonality Coastal nitrous oxide and methane emissions offset 30%-60% of the CO2 coastal uptake in the net radiative balance
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-23
    Beschreibung: The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM 60–65 , (Ti 0.60–0.65 Fe 0.35–0.40 )Fe 2 O 4 ). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples. Plain Language Summary Oceanic basalts are ideal recorders of the Earth's magnetic field. To decipher magnetic histories recorded in rocks, paleomagnetists need to isolate the magnetization directions and intensities within rocks by one of two possible methods. One method typically involves progressively heating the samples to high temperatures. The other method involves exposing samples to alternating magnetic fields with increasing peak field intensities. Both of these methods are ultimately destructive to the original magnetization preserved within rocks. However, without knowledge of a given rock's magnetic mineralogy, randomly choosing thermal or alternating field demagnetization methods may result in high failure rates. We developed a pre‐screening method to help decide which cleaning method will likely be more successful for a given sample based on low‐field magnetic susceptibility measurements. These measurements do not affect the original magnetic information recorded in a rock, thereby permitting subsequent paleomagnetic studies on the same sample. Our technique can be performed as rapidly as 2 min per sample, is non‐destructive, and does not require complicated sample preparation. Key Points Paleomagnetic studies utilize either alternating field or thermal demagnetization, but it is difficult to choose the best protocol a priori Amplitude‐dependence of magnetic susceptibility measurements permits preliminary magnetic mineralogy characterization in submarine basalts Rapid amplitude‐dependence measurements may aid in deciding upon the best demagnetization protocol for submarine basalt samples
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-04-10
    Beschreibung: Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-06-17
    Beschreibung: The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the “recovery wheel” presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3–5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-05-08
    Beschreibung: Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-06-11
    Beschreibung: Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies. Biological invasions increasingly threaten global ecosystems and socio-economic interests, advancing through mechanisms like natural selection that enhance survival and reproductive traits. Our study focuses on population-level analyses of non-native European freshwater macroinvertebrates to better understand their spread and impact. We found significant variability in invasion dynamics across populations and regions, suggesting that current species-level risk assessments may overlook crucial population-specific factors.image
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-06-12
    Beschreibung: The deep-sea water column below 200 m is a vast three-dimensional habitat with an enormous but largely unexplored biodiversity (Robison, 2009). Cephalopod mollusks are abundant in the deep sea and are important prey for many kinds of predators. Still, most deep-sea cephalopods have never been observed alive in their natural habitat and their reproductive biology remains poorly documented. In March of 2015, at a depth of 2566 m, we observed a female squid of an undescribed species but likely belonging to the Gonatidae, carrying few but exceptionally large eggs in her arms. This raises questions as to how these and other related animals reproduce in the deep sea, an environment that is generally characterized by darkness, low temperature, reduced oxygen, limited food availability, and low population densities. The authors were conducting dives with deep-sea robots (remotely operated vehicles or ROVs) equipped with cameras in the deep basins of the Gulf of California, to investigate how deep-sea fauna are distributed in relation to the extensive low-oxygen zones in the region (Gilly et al., 2013). The squid (Individual 1, Table 1) we observed with an ROV at 2566 m in the Gulf of California in 2015 was carrying 30–40 large eggs (average maximum diameter 11.2 mm, n = 5; measured eggs were 11.4, 10.4, 11.5, 11.7 and 11 mm maximum diameter) embedded in a small external egg sheet that did not extend beyond the arm tips. The size of the eggs was similar to those of two squid (Individuals 2 and 3, Table 1) that were observed close to the seafloor during earlier expeditions in the same region.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2024-06-20
    Beschreibung: The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (delta 13C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative delta 13C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable delta 13C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86, CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-07-04
    Beschreibung: Submarine landslides pose a hazard to coastal communities and critical seafloor infrastructure, occurring on all of the world's continental margins, from coastal zones to hadal trenches. Offshore monitoring has been limited by the largely unpredictable occurrence of submarine landslides and the need to cover large regions. Recent subsea monitoring has provided new insights into the preconditioning and run-out of submarine landslides using active geophysical techniques. However, these tools measure a small spatial footprint and are power- and memory-intensive, thus limiting long-duration monitoring. Most landslide events remain unrecorded. In this chapter, we first show how passive acoustic and seismologic techniques can record acoustic emissions and ground motions created by terrestrial landslides. This terrestrial-focused research has catalyzed advances in characterizing submarine landslides using onshore and offshore networks of broadband seismometers, hydrophones, and geophones. We discuss new insights into submarine landslide preconditioning, timing, location, velocity, and down-slope evolution arising from these advances. Finally, we outline challenges, emphasizing the need to calibrate seismic and acoustic signals generated by submarine landslides. Passive seismic and acoustic sensing has a strong potential to enable more complete hazard catalogs to be built and open the door to emerging techniques (such as fiber-optic sensing) to fill key knowledge gaps.
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...