ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siegel, D. A., Cetinic, I., Graff, J. R., Lee, C. M., Nelson, N., Perry, M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme, R., Fassbender, A. J., Nicholson, D., Omand, M. M., Robert, M., Thompson, A., Amaral, V., Behrenfeld, M., Benitez-Nelson, C., Bisson, K., Boss, E., Boyd, P. W., Brzezinski, M., Buck, K., Burd, A., Burns, S., Caprara, S., Carlson, C., Cassar, N., Close, H. H., D’Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L., Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray, D., Guidi, L., Haëntjens, N., Halsey, K., Huot, Y., Hansell, D., Jenkins, B., Karp-Boss, L., Kramer, S., Lam, P., Lee, J-M., Maas, A., Marchal, O., Marchetti, A., McDonnell, A., McNair, H., Menden-Deuer, S., Morison, F., Niebergall, A. K., Passow, U., Popp, B., Potvin, G., Resplandy, L., Roca-Martí, M., Roesler, C., Rynearson, T., Traylor, S., Santoro, A., Seraphin, K. D., Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., Van Mooy, B., Xiong, Y., Zhang, X. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elementa: Science of the Anthropocene, 9(1), (2021): 1, https://doi.org/10.1525/elementa.2020.00107.
    Description: The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
    Description: DAS, NN, KB, EF, SK, AB, AM, UP: NASA 80NSSC17K0692. MJB, EB, JG, LG, KH, LKB, JF, NH: NASA 80NSSC17K0568. KB, CBN, LR, MRM: NASA 80NSSC17K0555. CC, DH, BS: NASA 80NSSC18K0437. HC: NSF 1830016. BP, KDS: NSF 1829425. ME, KB, CD, MO: NASA 80NSSC17K0662. AF: NSF 1756932. BJ, KB, MB, SB, SC: NSF 1756442. PH, OM, JML: NSF 1829614. CL, ED, DN, MO, MJP, AT, ZN, ST: NASA 80NSSC17K0663. AM, NC, SG, WT, AN, WG: NASA 80NSSC17K0552. SMD, TR, HM, FM: NASA 80NSSC17K0716. CR, HS: NASA 80NSSC17K0700. AS, PB: NASA 80NSSC18K1431. DS, AM, KS NASA 80NSSC17K0654. BVM: NSF 1756254. XZ, DG, LG, YH: NASA 80NSSC17K0656 and 80NSSC20K0350.
    Keywords: Biological pump ; NASA field campaign ; NPP fates ; Carbon cycle ; Organic carbon export ; Export pathways
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.
    Description: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
    Description: This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.).
    Keywords: Radiocarbon ; Plant biomarkers ; Carbon turnover times ; Fluvial carbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina, L. L., Dutay, J., German, C. R., Heimburger-Boavida, L., Jaccard, S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova, M., V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A., Shiller, A., Tagliabue, A., Tessin, A. C., van Hulten, M., & Zhang, J. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochemical Cycles, 35(4), (2021): e2020GB006769, https://doi.org/10.1029/2020GB006769.
    Description: Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
    Description: This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US-NSF. The work grew out of a 2018 workshop in Aix-Marseille, France, funded by PAGES, GEOTRACES, SCOR, US-NSF, Aix Marseille Université, and John Cantle Scientific, and the authors would like to acknowledge all attendees of this meeting. The authors acknowledge the participants of the 68th cruise of RV Akademik Mstislav Keldysh for helping acquire samples. Christopher T. Hayes acknowledges support from US-NSF awards 1658445 and 1737023. Some data compilation on Arctic shelf seas was supported by the Russian Science Foundation, grant number 20-17-00157. This work was also supported through project CRESCENDO (grant no. 641816, European Commission). Zanna Chase acknowledges support from the Australian Research Council’s Discovery Projects funding scheme (project DP180102357). Christopher R. German acknowledges US-NSF awards 1235248 and 1234827. Some colorbars used in the figures were designed by Kristen Thyng et al. (2016) and Patrick Rafter.
    Keywords: Barium ; Carbon cycle ; Marine atlas ; Mercury ; Opal ; Sediment burial
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(10), (2021): e2021GL092904, https://doi.org/10.1029/2021GL092904.
    Description: We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C values in seawater collected from the Southern Ocean and eastern Pacific GOSHIP cruise P18 in 2016/2017. The aging of 14C in DOC in circumpolar deep water northward from 69°S to 20°N was similar to that measured in dissolved inorganic carbon in the same samples, indicating that the transport of deep waters northward is the primary control of 14C in DIC and DOC. Low DOC ∆14C and δ13C measurements between 1,200 and 3,400 m depth may be evidence of a source of DOC produced in nearby hydrothermal ridge systems (East Pacific Rise).
    Description: This work was supported by NSF (OCE-1458941 and OCE-1951073 to Ellen R. M. Druffel), Fred Kavli Foundation, Keck Carbon Cycle AMS Laboratory, NSF/NOAA funded GO-SHIP Program, Canada Research Chairs program (to Brett D. Walker) and American Chemical Society Petroleum Research Fund New Directions (55,430-ND2 to Ellen R. M. Druffel and Brett D. Walker).
    Description: 2021-11-24
    Keywords: 13C ; Carbon cycle ; Circumpolar deep water ; Dissolved inorganic carbon ; Dissolved organic carbon ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-31
    Description: Dataset: In situ dissolution rates of biogenic calcites
    Description: This dataset includes biogenic and inorganic calcite and aragonite dissolution rate data from the CDisK-IV cruise in the North Pacific Ocean, August 2017. We include niskin incubator alkalinity, pH, silicate, phosphate, and nitrate data, as well as calculated saturation state and dissolution rates. Rates are reported in units of g/g/day and also g/cm2/day, normalized by the specific surface areas of the materials used. Dissolution rates of inorganic aragonite and calcite, along with biogenic E. huxleyi liths, a planktic foraminifera assemblage, and a benthic foraminifera Amphistegina species, are provided, for 4 out of the 6 stations occupied on the cruise. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856409
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1220600, NSF Division of Ocean Sciences (NSF OCE) OCE-1220302
    Keywords: Calcium Carbonate ; Dissolution ; Carbon cycle ; Calcite ; Aragonite
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(11), (2021): e2021GL093178, https://doi.org/10.1029/2021GL093178.
    Description: The effects of heterogeneous reactions between river-borne particles and the carbonate system were studied in the plumes of the Mississippi and Brazos rivers. Measurements within these plumes revealed significant removal of dissolved inorganic carbon (DIC) and total alkalinity (TA). After accounting for all known DIC and TA sinks and sources, heterogeneous reactions (i.e., heterogeneous CaCO3 precipitation and cation exchange between adsorbed and dissolved ions) were found to be responsible for a significant fraction of DIC and TA removal, exceeding 10% and 90%, respectively, in the Mississippi and Brazos plume waters. This finding was corroborated by laboratory experiments, in which the seeding of seawater with the riverine particles induced the removal of the DIC and TA. The combined results demonstrate that heterogeneous reactions may represent an important controlling mechanism of the seawater carbonate system in particle-rich coastal areas and may significantly impact the coastal carbon cycle.
    Description: This research was funded by the National Science Foundation (NSF) and the Bi-National Science Foundation U.S-Israel award number OCE-BSF 1635388.
    Description: 2021-11-20
    Keywords: Calcium carbonate ; Carbon cycle ; Carbonate chemistry ; Heterogeneous reactions ; Mississippi ; River mouths
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...