ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (1,264)
  • 1990-1994  (1)
  • 2021  (777)
  • 2020  (489)
Collection
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Stuttgart : Schweizerbart Science Publishers ; Volume 1, number 1 (1978)-
    Call number: M 18.91571
    Type of Medium: Monograph available for loan
    Pages: 134 Seiten
    ISSN: 2363-7196
    Series Statement: Global tectonics and metallogeny : special issue Vol. 10/2-4
    Classification:
    Tectonics
    Parallel Title: Erscheint auch als Global tectonics and metallogeny
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-20
    Description: Early to Middle Miocene sea-level oscillations of approximately 40–60 m estimated from far-field records1–3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72–17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-21
    Description: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. Conclusions: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A., V., Myers-Smith, I., Abbot, B. W., Abermann, J., Blanc-Betes, E., Blok, D., Blume-Werry, G., Boike, J., Breen, A. L., Cahoon, S. M. P., Christiansen, C. T., Douglas, T. A., Epstein, H. E., Frost, G., V., Goeckede, M., Hoye, T. T., Mamet, S. D., O'Donnell, J. A., Olefeldt, D., Phoenix, G. K., Salmon, V. G., Sannel, A. B. K., Smith, S. L., Sonnentag, O., Vaughn, L. S., Williams, M., Elberling, B., Gough, L., Hjort, J., Lafleur, P. M., Euskirchen, E. S., Heijmans, M. M. P. D., Humphreys, E. R., Iwata, H., Jones, B. M., Jorgenson, M. T., Gruenberg, I., Kim, Y., Laundre, J., Mauritz, M., Michelsen, A., Schaepman-Strub, G., Tape, K. D., Ueyama, M., Lee, B., Langley, K., & Lund, M. Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems. Environmental Research Letters, 16(1), (2021): 015001. doi:10.1088/1748-9326/abc994.
    Description: Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (〉40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
    Description: We thank G Peter Kershaw, LeeAnn Fishback, Cathy Wilson, and Coleen Iversen for assistance in collection of data. We thank the Permafrost Carbon Network for support and organization of the data synthesis. We thank Vladimir Romanovsky for his feedback and contribution of publicly available data. This project was supported by the National Science Foundation (Grant No. 1417745 to M L, Grant No. 1417700 to S M N, Grant No. 1417908 to A K, Grant No. 1556772 to A R, Grant No. 1637459 to L G, Grant No. 1636476 and Grant No. 1503912 to E S E, Grant No. 1806213 to B M J, Grant No. 1833056 to K D T), UK Natural Environment Research Council (Grant No. NE/M016323/1 to I H M S, Grant No. NE/K00025X/1 to G K P, Grant No. NE/K000292/1 to M W), Natural Sciences and Engineering Research (to P L, I H M S, Grant No. RGPIN-2016-04688 to D O), Council of Canada, Canadian Graduate Scholarship to (I H M -S), Greenland Ecosystem Monitoring Programme: ClimateBasis (to J A and K A), The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science (to A L B), Engineer Research and Development Center Army Direct (6.1) Research Program and the Strategic Environmental Research and Development Program (projects RC-2110 and 18-1170 to T A D), United States Geological Survey (to E E S), Arctic Challenge for Sustainability (ArCS; Grant No. JPMXD1300000000) and ArCS II (Grant No. JPMXD1420318865) (to M U and H I), the Danish National Research Foundation (Grant No. CENPERM DNRF100 to B E), the Academy of Finland (Grant No. 315519), the National Research Foundation of Korea (Grant Nos. NRF-2016M1A5A1901769; KOPRI-PN20081 to K Y and B Y L), Research Network for Geosciences in Berlin and Potsdam (to I G), the Swiss National Science Foundation (Grant No. 140631 to G S S), the URPP Global Change and Biodiversity, University of Zurich (to G S S), the University of Alberta Northern Research Awards (to D O), and the Northern Scientific Training Program (to D O), and UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) Office of Science, Biological and Environmental Research (to V G S). S M has been supported by grants and/or in-kind from Natural Sciences and Engineering Research Council of Canada, AMAX Northwest Mining, Co. (North American Tungsten Corp., Ltd), Imperial Oil, Ltd, University of Alberta, Earthwatch International (EI), The Garfield Weston Foundation, Wapusk National Park, Churchill Northern Studies Centre, and the Northern Scientific Training Program. All code for this project are archived (DOI: 10.5281/zenodo.4041165). The data that support the findings of this study are openly available through the Arctic Data Center (Heather Kropp, Michael Loranty, Britta Sannel, Jonathan O'Donnell, Elena Blanc-Betes, et al 2020. Synthesis of soil-air temperature and vegetation measurements in the pan-Arctic. 1990-2016. Arctic Data Center. doi:10.18739/A2736M31X).
    Keywords: Arctic ; Boreal forest ; Soil temperature ; Vegetation change ; Permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920.
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Description: Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, Netherlands Organization for Scientific Research, and Independent Research Fund Denmark. Data from GEOTRACES cruises GN01 (HLY1502) and GN04 (PS94) have been archived at the Biological and Chemical Oceanography Data Management Office (Biological and Chemical Oceanography Data Management Office (BCO‐DMO); https://www.bco-dmo.org/deployment/638807) and PANGAEA (https://www.pangaea.de/?q=PS94&f.campaign%5B%5D=PS94) websites, respectively. The inorganic carbon data are available at the NOAA Ocean Carbon Data System (OCADS; doi:10.3334/CDIAC/OTG.CLIVAR_ARC01_33HQ20150809).
    Description: 2020-10-08
    Keywords: Arctic Ocean ; Transpolar Drift ; trace elements ; carbon ; nutrients ; GEOTRACES]
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-21
    Description: Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a “SQLite” relational database or “ASCII” flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R-project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: 29 April 2020: Release of Version 0.3 This is an updated version of Reyer et al., (2019, V. 0.1.12, http://doi.org/10.5880/PIK.2019.008). All changes and updates are documented in the changelog available via the data download section. Current process-based vegetation models are complex scientific tools that require proper evaluation of the different processes included in the models to prove that the models can be used to integrate our understanding of forest ecosystems and project climate change impacts on forests. The PROFOUND database (PROFOUND DB) described here aims to bring together data from a wide range of data sources to evaluate vegetation models and simulate climate impacts at the forest stand scale. It has been designed to fulfill two objectives: - Allow for a thorough evaluation of complex, process-based vegetation models using multiple data streams covering a range of processes at different temporal scales - Allow for climate impact assessments by providing the latest climate scenario data. Therefore, the PROFOUND DB provides general a site description as well as soil, climate, CO2, Nitrogen deposition, tree-level, forest stand-level and remote sensing data for 9 forest stands spread throughout Europe. Moreover, for a subset of 5 sites, also time series of carbon fluxes, energy balances and soil water are available. The climate and nitrogen deposition data contains several datasets for the historic period and a wide range of future climate change scenarios following the Representative Emission Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). In addition, we also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND Database is available freely but we incite users to respect the data policies of the individual datasets as provided in the metadata of each data file. The database can also be accessed via the PROFOUND R-package, which provides basic functions to explore, plot and extract the data. The data (PROFOUND DB) are provided in two different versions (ProfoundData.sqlite download as ProfoundData.zip, ProfoundData_ASCII.zip) accompanied by a change-log to the previous published version (changelog_Profound-DB_v03.pdf), auxiliary data of reconstructed single tree data at the site Sorø (Soroe_DBH_H_AGE_20200428.zip) and documented by the three explanatory documents: (1) PROFOUNDdatabase.pdf: describes the structure, organisation and content of the PROFOUND DB. (2) PROFOUNDsites.pdf: displays the main data of the PROFOUND DB for each of the 9 forest sites in tables and plots. (3) ProfoundData.pdf: explains how to use the PROFOUND R-Package "ProfoundData" to access the PROFOUND DB and provides example scripts on how to apply it.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-15
    Description: The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval—the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models—the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Farrell, U. C., Samawi, R., Anjanappa, S., Klykov, R., Adeboye, O. O., Agic, H., Ahm, A.-S. C., Boag, T. H., Bowyer, F., Brocks, J. J., Brunoir, T. N., Canfield, D. E., Chen, X., Cheng, M., Clarkson, M. O., Cole, D. B., Cordie, D. R., Crockford, P. W., Cui, H., Dahl, T. W., Mouro, L. D., Dewing, K., Dornbos, S. Q., Drabon, N., Dumoulin, J. A., Emmings, J. F., Endriga, C. R., Fraser, T. A., Gaines, R. R., Gaschnig, R. M., Gibson, T. M., Gilleaudeau, G. J., Gill, B. C., Goldberg, K., Guilbaud, R., Halverson, G. P., Hammarlund, E. U., Hantsoo, K. G., Henderson, M. A., Hodgskiss, M. S. W., Horner, Tristan J., Husson, J. M., Johnson, B., Kabanov, P., Brenhin K. C., Kimmig, J., Kipp, M. A., Knoll, A. H., Kreitsmann, T., Kunzmann, M., Kurzweil, F., LeRoy, M. A., Li, C., Lipp, A. G., Loydell, D. K., Lu, X., Macdonald, F. A., Magnall, J. M., Mänd, K., Mehra, A., Melchin, M. J., Miller, A. J., Mills, N. T., Mwinde, C. N., O'Connell, B., Och, L. M., Ossa Ossa, F., Pagès, A., Paiste, K., Partin, C. A., Peters, S. E., Petrov, P., Playter, T. L., Plaza-Torres, S., Porter, Susannah M., Poulton, S. W., Pruss, S. B., Richoz, S., Ritzer, S. R., Rooney, A. D., Sahoo, S. K., Schoepfer, S. D., Sclafani, J. A., Shen, Y., Shorttle, O., Slotznick, S. P., Smith, E. F., Spinks, S., Stockey, R. G., Strauss, J. V., Stüeken, E. E., Tecklenburg, S., Thomson, D., Tosca, N. J., Uhlein, G. J., Vizcaíno, M. N., Wang, H., White, T., Wilby, P. R., Woltz, C. R., Wood, R. A., Xiang, L., Yurchenko, I. A., Zhang, T., Planavsky, N. J., Lau, K. V., Johnston, D. T., Sperling, E. A., The Sedimentary Geochemistry and Paleoenvironments Project. Geobiology. 00, (2021): 1– 12,https://doi.org/10.1111/gbi.12462.
    Description: Geobiology explores how Earth's system has changed over the course of geologic history and how living organisms on this planet are impacted by or are indeed causing these changes. For decades, geologists, paleontologists, and geochemists have generated data to investigate these topics. Foundational efforts in sedimentary geochemistry utilized spreadsheets for data storage and analysis, suitable for several thousand samples, but not practical or scalable for larger, more complex datasets. As results have accumulated, researchers have increasingly gravitated toward larger compilations and statistical tools. New data frameworks have become necessary to handle larger sample sets and encourage more sophisticated or even standardized statistical analyses. In this paper, we describe the Sedimentary Geochemistry and Paleoenvironments Project (SGP; Figure 1), which is an open, community-oriented, database-driven research consortium. The goals of SGP are to (1) create a relational database tailored to the needs of the deep-time (millions to billions of years) sedimentary geochemical research community, including assembling and curating published and associated unpublished data; (2) create a website where data can be retrieved in a flexible way; and (3) build a collaborative consortium where researchers are incentivized to contribute data by giving them priority access and the opportunity to work on exciting questions in group papers. Finally, and more idealistically, the goal was to establish a culture of modern data management and data analysis in sedimentary geochemistry. Relative to many other fields, the main emphasis in our field has been on instrument measurement of sedimentary geochemical data rather than data analysis (compared with fields like ecology, for instance, where the post-experiment ANOVA (analysis of variance) is customary). Thus, the longer-term goal was to build a collaborative environment where geobiologists and geologists can work and learn together to assess changes in geochemical signatures through Earth history.
    Description: We thank the donors of The American Chemical Society Petroleum Research Fund for partial support of SGP website development (61017-ND2). EAS is funded by National Science Foundation grant (NSF) EAR-1922966. BGS authors (JE, PW) publish with permission of the Executive Director of the British Geological Survey, UKRI.
    Keywords: Consortium ; Database ; Earth history ; Geochemistry ; Website
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siegel, D. A., Cetinic, I., Graff, J. R., Lee, C. M., Nelson, N., Perry, M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme, R., Fassbender, A. J., Nicholson, D., Omand, M. M., Robert, M., Thompson, A., Amaral, V., Behrenfeld, M., Benitez-Nelson, C., Bisson, K., Boss, E., Boyd, P. W., Brzezinski, M., Buck, K., Burd, A., Burns, S., Caprara, S., Carlson, C., Cassar, N., Close, H. H., D’Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L., Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray, D., Guidi, L., Haëntjens, N., Halsey, K., Huot, Y., Hansell, D., Jenkins, B., Karp-Boss, L., Kramer, S., Lam, P., Lee, J-M., Maas, A., Marchal, O., Marchetti, A., McDonnell, A., McNair, H., Menden-Deuer, S., Morison, F., Niebergall, A. K., Passow, U., Popp, B., Potvin, G., Resplandy, L., Roca-Martí, M., Roesler, C., Rynearson, T., Traylor, S., Santoro, A., Seraphin, K. D., Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., Van Mooy, B., Xiong, Y., Zhang, X. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elementa: Science of the Anthropocene, 9(1), (2021): 1, https://doi.org/10.1525/elementa.2020.00107.
    Description: The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
    Description: DAS, NN, KB, EF, SK, AB, AM, UP: NASA 80NSSC17K0692. MJB, EB, JG, LG, KH, LKB, JF, NH: NASA 80NSSC17K0568. KB, CBN, LR, MRM: NASA 80NSSC17K0555. CC, DH, BS: NASA 80NSSC18K0437. HC: NSF 1830016. BP, KDS: NSF 1829425. ME, KB, CD, MO: NASA 80NSSC17K0662. AF: NSF 1756932. BJ, KB, MB, SB, SC: NSF 1756442. PH, OM, JML: NSF 1829614. CL, ED, DN, MO, MJP, AT, ZN, ST: NASA 80NSSC17K0663. AM, NC, SG, WT, AN, WG: NASA 80NSSC17K0552. SMD, TR, HM, FM: NASA 80NSSC17K0716. CR, HS: NASA 80NSSC17K0700. AS, PB: NASA 80NSSC18K1431. DS, AM, KS NASA 80NSSC17K0654. BVM: NSF 1756254. XZ, DG, LG, YH: NASA 80NSSC17K0656 and 80NSSC20K0350.
    Keywords: Biological pump ; NASA field campaign ; NPP fates ; Carbon cycle ; Organic carbon export ; Export pathways
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...