ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-12-13
    Description: We use joint observations by the Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveals that LAT nondetections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the nondetected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1100 GeV energy range considered for this analysis.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN59161 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 863; 2; 138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A (sub GWB) 〈 1.45 10 (exp -15) at a frequency of f=1 yr(exp -1) for a fiducial f (exp -2/3) power-law spectrum and with interpulsar correlations modeled. This is a factor of approximately 2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of G (sub mu) 〈 5.3 10(exp -11) - a factor of approximately 2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is omega (sub GWB)(f) h (exp 2) 〈 3.4 10 (exp -10).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN59128 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 859; 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We performed small-scale demonstrations at GSFC of high-resolution Xray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space-based X-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 55mKstage of our laboratory ADR. Using aROACH2 FPGA at room temperature, we read out pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to rf-SQUIDs. The resonators are spaced 6 MHz apart (at 5.9 GHz) and have quality factors of 15,000. In our initial demonstration, we used flux-ramp modulation frequencies of 125 kHz to read out 5 pixels simultaneously and achieved spectral resolutions of 2.8-3.1 eV FWHM at 5.9 keV. Our subsequent work is ongoing: to-date we have achieved a median spectral resolution of 3.4 eV FWHM at 5.9 keV while reading out 28 pixels simultaneously with flux-ramp frequencies of 160 kHz. We present the measured system-level noise and maximum slew rates and briefly describe our future development work.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN57932 , Journal of Low Temperature Physics (ISSN 0022-2291) (e-ISSN 1573-7357)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at ~0.72 (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of ~13 with a position angle of ~91 east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of ~1.5 (~52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at ~0.2 (~7 au) and another belt at 0.72 (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 Solar Mass planet with a semi-major axis at 2030 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64806 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 617; A109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 412 km/s); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 and 0.55 in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64813 , The Astronomy & Astrophysics Journal (ISSN 0004-6361) (e-ISSN 1432-0746); 614; A52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin- Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60686 , Space Science Reviews (ISSN 0038-6308) (e-ISSN 1572-9672); 214; 4; 79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 3840 AC-biased transition edge sensors (TESs), read out using frequency domain multiplexing (FDM). In this paper we describe details of the latest pixels geometries that are being designed for the current baseline array configuration. This includes details on how important TES properties (transition parameters, thermal design of the pixels, absorber composition) are being optimized to meet the target energy resolution, count-rate and quantum efficiency. We also present the latest design optimizations specifically targeted at mitigating AC-bias phenomena in Mo/Au TESs that can degrade performance.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN58027 , Space Telescopes and Instrumentation 2018; Jun 10, 2018 - Jun 15, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN53613
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: We present SCExAO/CHARIS high-contrast imaging/JHK integral eld spectroscopy of And b, a directly imaged low-mass companion orbiting a nearby B9V star. We detect And b at a high signal-to-noise ratio and extract high-precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Pueyo et al. And bs spectrum best resembles that of a low-gravity L0L1 dwarf (L0L1). Its spectrum and luminosity are very well matched by 2MASS J0141-4633 and several other 12.515 M(sub J) free-oating members of the 40 Myr old TucHor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13(sup +12, sub -2) M(sub J)), and a companion-to-primary mass ratio characteristic of other directly imaged planets (q 0.005(sup +0.005, sub -0.001)). We did not unambiguously identify additional, more closely orbiting companions brighter and more massive than And b down to 0".3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points toward a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the stars rotation axis. However, And bs semimajor axis is plausibly larger than 55 au and in a region where disk instability could form massive companions. Deeper high-contrast imaging of And and low-resolution spectroscopy from extreme adaptive optics systems such as SCExAO/CHARIS and higher-resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help to clarify And bs chemistry and whether its spectrum provides an insight into its formation environment.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64795 , The Astrophysical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 156; 6; 291
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: We present new, near-infrared (1.12.4 m) high-contrast imaging of the bright debris disk surrounding HIP 79977 with the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) coupled with the CHARIS integral eld spectrograph. SCExAO/CHARIS resolves the disk down to smaller angular separations of (0".11; r 14 au) and at a higher signicance than previously achieved at the same wavelengths. The disk exhibits a marginally signicant eastwest brightness asymmetry in H band that requires conrmation. Geometrical modeling suggests a nearly edge-on disk viewed at a position angle of 114.6 east of north. The disk is best-t by scattered-light models assuming strongly forward-scattering grains (g 0.50.65) conned to a torus with a peak density at r0 5375 au. We nd that a shallow outer density power law of (sub out) = 1 to 3 and are index of = 1 are preferred. Other disk parameters (e.g., inner density power law and vertical scale height) are more poorly constrained. The disk has a slightly blue intrinsic color and its prole is broadly consistent with predictions from birth ring models applied to other debris disks. While HIP 79977s disk appears to be more strongly forward- scattering than most resolved disks surrounding 530 Myr old stars, this difference may be due to observational biases favoring forward-scattering models for inclined disks versus lower inclination, ostensibly neutral-scattering disks like HR 4796As. Deeper, higher signal-to-noise SCExAO/CHARIS data can better constrain the disks dust composition.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64796 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 156; 6; 279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...