ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (4)
  • Male  (3)
  • Meteorology and Climatology  (2)
  • GEOPHYSICS
  • 2015-2019  (9)
  • 2016  (9)
  • 1
    Publication Date: 2016-01-20
    Description: Mitochondrial morphology is shaped by fusion and division of their membranes. Here, we found that adult myocardial function depends on balanced mitochondrial fusion and fission, maintained by processing of the dynamin-like guanosine triphosphatase OPA1 by the mitochondrial peptidases YME1L and OMA1. Cardiac-specific ablation of Yme1l in mice activated OMA1 and accelerated OPA1 proteolysis, which triggered mitochondrial fragmentation and altered cardiac metabolism. This caused dilated cardiomyopathy and heart failure. Cardiac function and mitochondrial morphology were rescued by Oma1 deletion, which prevented OPA1 cleavage. Feeding mice a high-fat diet or ablating Yme1l in skeletal muscle restored cardiac metabolism and preserved heart function without suppressing mitochondrial fragmentation. Thus, unprocessed OPA1 is sufficient to maintain heart function, OMA1 is a critical regulator of cardiomyocyte survival, and mitochondrial morphology and cardiac metabolism are intimately linked.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wai, Timothy -- Garcia-Prieto, Jaime -- Baker, Michael J -- Merkwirth, Carsten -- Benit, Paule -- Rustin, Pierre -- Ruperez, Francisco Javier -- Barbas, Coral -- Ibanez, Borja -- Langer, Thomas -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):aad0116. doi: 10.1126/science.aad0116.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, 50674 Cologne, Germany. Max-Planck-Institute for Biology of Aging, Cologne, Germany. ; Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. ; Institute for Genetics, University of Cologne, 50674 Cologne, Germany. ; INSERM UMR 1141, Hopital Robert Debre, Paris, France. Universite Paris 7, Faculte de Medecine Denis Diderot, Paris, France. ; Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain. ; Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. Department of Cardiology, Instituto de Investigacion Sanitaria (IIS), Fundacion Jimenez Diaz Hospital, Madrid, Spain. thomas.langer@uni-koeln.de bibanez@cnic.es. ; Institute for Genetics, University of Cologne, 50674 Cologne, Germany. Max-Planck-Institute for Biology of Aging, Cologne, Germany. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany. thomas.langer@uni-koeln.de bibanez@cnic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomyopathy, Dilated/genetics/metabolism/pathology ; Diet, High-Fat ; Embryonic Development ; Female ; GTP Phosphohydrolases ; Gene Deletion ; Heart/embryology ; Heart Failure/genetics/*metabolism/pathology ; Male ; Metalloendopeptidases/genetics ; Metalloproteases/genetics/metabolism ; Mice ; Mice, Knockout ; Mitochondria, Heart/*metabolism/ultrastructure ; *Mitochondrial Degradation ; *Mitochondrial Dynamics ; Mitochondrial Proteins/genetics/metabolism ; Muscle, Skeletal/enzymology ; Myocardium/*metabolism/pathology ; Myocytes, Cardiac/enzymology/pathology ; Proteolysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narasimhan, Vagheesh M -- Hunt, Karen A -- Mason, Dan -- Baker, Christopher L -- Karczewski, Konrad J -- Barnes, Michael R -- Barnett, Anthony H -- Bates, Chris -- Bellary, Srikanth -- Bockett, Nicholas A -- Giorda, Kristina -- Griffiths, Christopher J -- Hemingway, Harry -- Jia, Zhilong -- Kelly, M Ann -- Khawaja, Hajrah A -- Lek, Monkol -- McCarthy, Shane -- McEachan, Rosie -- O'Donnell-Luria, Anne -- Paigen, Kenneth -- Parisinos, Constantinos A -- Sheridan, Eamonn -- Southgate, Laura -- Tee, Louise -- Thomas, Mark -- Xue, Yali -- Schnall-Levin, Michael -- Petkov, Petko M -- Tyler-Smith, Chris -- Maher, Eamonn R -- Trembath, Richard C -- MacArthur, Daniel G -- Wright, John -- Durbin, Richard -- van Heel, David A -- GM 099640/GM/NIGMS NIH HHS/ -- MR/M009017/1/Medical Research Council/United Kingdom -- R01 GM104371/GM/NIGMS NIH HHS/ -- R01GM104371/GM/NIGMS NIH HHS/ -- WT098051/Wellcome Trust/United Kingdom -- WT099769/Wellcome Trust/United Kingdom -- WT101597/Wellcome Trust/United Kingdom -- WT102627/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Arthritis Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- Chief Scientist Office/United Kingdom -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):474-7. doi: 10.1126/science.aac8624. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. ; Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK. ; Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. ; Diabetes and Endocrine Centre, Heart of England NHS Foundation Trust and University of Birmingham, Birmingham B9 5SS, UK. ; TPP, Mill House, Troy Road, Leeds LS18 5TN, UK. ; Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK. ; 10X Genomics, 7068 Koll Center Parkway, Suite 415, Pleasanton, CA 94566, USA. ; Farr Institute of Health Informatics Research, London NW1 2DA, UK. Institute of Health Informatics, University College London, London NW1 2DA, UK. ; School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK. ; Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Box 238, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. rd@sanger.ac.uk d.vanheel@qmul.ac.uk. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. rd@sanger.ac.uk d.vanheel@qmul.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940866" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; *Consanguinity ; DNA Mutational Analysis ; Drug Prescriptions ; Exome/genetics ; Female ; Fertility ; Gene Knockout Techniques ; Genes, Lethal ; Genetic Loci ; Genome, Human ; Great Britain ; *Health ; Histone-Lysine N-Methyltransferase/*genetics ; Homologous Recombination ; Homozygote ; Humans ; Male ; Mothers ; Pakistan/ethnology ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-04
    Description: Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Darren J -- Childs, Bennett G -- Durik, Matej -- Wijers, Melinde E -- Sieben, Cynthia J -- Zhong, Jian -- Saltness, Rachel A -- Jeganathan, Karthik B -- Verzosa, Grace Casaclang -- Pezeshki, Abdulmohammad -- Khazaie, Khashayarsha -- Miller, Jordan D -- van Deursen, Jan M -- AG041122/AG/NIA NIH HHS/ -- HL111121/HL/NHLBI NIH HHS/ -- P01 AG041122/AG/NIA NIH HHS/ -- R01 CA096985/CA/NCI NIH HHS/ -- R01CA96985/CA/NCI NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):184-9. doi: 10.1038/nature16932. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA. ; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA. ; Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA. ; Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840489" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/pathology/physiology ; Aging/*pathology/*physiology ; Animals ; Apoptosis ; Cell Aging/*physiology ; Cell Separation ; Cell Transformation, Neoplastic/pathology ; Cyclin-Dependent Kinase Inhibitor p16/*metabolism ; Epithelial Cells/cytology/pathology ; Female ; *Health ; Kidney/cytology/pathology/physiology/physiopathology ; Lipodystrophy/pathology ; Longevity/*physiology ; Male ; Mice ; Myocardium/cytology/metabolism/pathology ; Organ Specificity ; Stem Cells/cytology/pathology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 (zeta = 0.363), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to host a faint (S(sub 610) = 5.6 +/- 1.4 mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, M(sub 500,SZ) = (5.0 +/- 1.2) x 10(sup14) solar mass foud to host a GRH. We measure the GRH at lower significance at 325 MHz (S(sub 325) = 10.3 +/- 5.3 mJy), obtaining a spectral index measurement of alpha sup 610 sub 325 = 1.0(sup +0.7)(sub 0.9). This result is consistent with the mean spectral index of the population of typical radio halos, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P(sub 1.4GHz) = (1.0 +/- 03) x 10(sup 24) W Hz(sup -1), placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of perpendicular = 1880 +/- 210 km s(sup -1). We construct a simple merger model of infer relevant time-scales in the merger. From its location on the P1.4GHz-L(sub x) scaling relation, we infer that we observe ACT-CL J0256.5+0006 just before first core crossing.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN32419 , Monthly Notices Letters of the Royal Astronomical Observatory (e-ISSN 1745-3933); 459; 4; 4240-4258
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.
    Keywords: Meteorology and Climatology
    Type: NF1676L-23629 , SPARC SSiRC Workshop; Apr 25, 2016 - Apr 28, 2016; Potsdam; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We present multi-wavelength detections of nine candidate gravitationally-lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of 4.1 (+ 1.1, -10) (68 percent confidence interval), as expected for 218 GHz selection and an apparent total infrared luminosity of log 10(uL(sub IR)/solar luminosity) = 13.86(+0.33, -0.30), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is square root of mu d = 4.2 (+ 1.7, -1.0) kpc, further evidence of strong lensing of multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of opticaly thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = (4.2+, -1.9) of dust around the peak in the modified blackbody spectrum (lambda obs is less than 500 micrometers), a result that is robust to model choice.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN36237 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); ujme 464; 1; 968-984
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.
    Keywords: Meteorology and Climatology
    Type: NF1676L-25433 , AeroCom Workshop; Sep 19, 2016 - Sep 23, 2016; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)- selected merging galaxy cluster ACT-CL J0256.5+ 0006 (z = 0.363), observed with the Giant Metrewave Radio Telescope at 325 and 610 MHz. We find this cluster to host a faint (S610 = 5.6 +/- 1.4mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest mass systems, M500, SZ = (5.0 +/- 1.2) 10(exp14) M, found to host a GRH. We measure the GRH at lower significance at 325 MHz (S325 = 10.3 +/- 5.3mJy), obtaining a spectral index measurement of 610 325 = 1.0+ 0.7 0.9. This result is consistent with the mean spectral index of the population of typical radio haloes, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P1.4 GHz = (1.0 +/- 0.3) 10(exp 24)W/Hz, placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the intracluster medium morphology, suggest that ACT-CL J0256.5+ 0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of v = 1880 +/- 210 km/s. We construct a simple merger model to infer relevant time-scales in the merger. From its location on the P1.4GHz-LX scaling relation, we infer that we observe ACT-CL J0256.5+ 0006 just before first core crossing.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40455 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-8711); 459; 4; 4240-4258
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst〈100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40269 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 121; 3; 1990–2008
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...