ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2021-07-01
    Description: The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120–600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on 〉15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis.
    Description: Plain Language Summary: The radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise complex and dynamic systems posing a significant threat to a variety of commercial and military satellites. While the inner belt is relatively stable, the outer belt is highly variable and depends substantially on solar activity; therefore, accurate and improved models of electron flux in the outer radiation belt are essential to understand the underlying physical processes. Although many models have been developed for the geostationary orbit and relativistic energies, prediction of electron flux in the 120–600 keV energy range still remains challenging. We present a data‐driven model of the medium energies (120–600 keV) differentialelectron flux in the outer radiation belt based on machine learning. We use 17 years of electron observations by Global Positioning System (GPS) satellites. We set up a 3D model for flux prediction in terms of L‐values, MLT, and magnetic latitude. The model gives reliable predictions of the radiation environment in the outer radiation belt and has wide space weather applications.
    Description: Key Points: A machine learning model is created to predict electron flux at MEO for energies 120–600 keV. The model requires solar wind parameters and geomagnetic indices as input and does not use persistence. MERLIN model yields high accuracy and high correlation with observations (0.8).
    Description: Horizon 2020 – The EU Research and Innovation programme
    Keywords: 523.5 ; machine learning ; radiation belts ; electron flux ; empirical modeling ; magnetosphere ; electrons
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Keywords: Ionosphere (auroral ionosphere; plasma convection) ; Magnetospheric physics (storms and substorms)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0992-7689
    Keywords: Magnetospheric Physics (Storms and substorms).
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1) the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095) were found to have comparable activation structure. (2) The energetic (〉 69 keV) proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present an analysis of ground magnetic field, ionospheric flow, geosynchronous particle, and interplanetary data during a multiple-onset substorm on 12 April 1988. Our principal results concern the modulations of the ionospheric flow which occur during the impulsive electrojet activations associated with each onset. During the first hour of the disturbance these take place every \sim12.5 min and involve the formation of a new intense westward current filament in the premidnight sector, just poleward of the preexisting extended current system driven by the large-scale flow. These filaments are \sim1 h MLT wide (\sim600 km), and initially expand poleward to a width of \sim300 km before contracting equatorward and coalescing with the preexisting current, generally leaving the latter enhanced in magnitude and/or expanded in latitude. Within the impulsive electrojets the flow is found to be suppressed to values 50–100 m s−1 or less during the first few minutes, before surging equatorward at 0.5-1.0 km s−1 during the phase of rapid coalescence. The implication is that the precipitation-induced Hall conductivity within the impulsive electrojet initially rises to exceed \sim100 mho, before decaying over a few minutes. This value compares with Hall conductivities of \sim20 mho in the quasi-steady current regions, and a few mho or less in the regions poleward of the electrojets and in the preonset ionosphere. Preliminary evidence has also been found that the flow surges propagate from midnight to the morning sector where they are associated with arrested equatorward motion or poleward contractions of the current system. These observations are discussed in terms of present theoretical paradigms of the global behaviour of fields and flows which occur during substorms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We capitalise on the very large field of view of the Halley HF radar to provide a comprehensive description of the electric field response to the substorm growth phase and expansion phase onset of a relatively simple isolated substorm (|AL| 〈 250 nT) which occurred on 13 June 1988. The substorm phases are identified by their standard ground magnetic and spacecraft energetic particle signatures, which provide a framework for the radar measurements. The substorm is preceded by a prolonged period (〉 12 h) of magnetic quiescence, such that prior to the start of the growth phase, the apparent latitudinal motion of the radar backscatter returns is consistent with the variation in latitude of the quiet-time auroral oval with magnetic local time. The growth phase is characterised by an increasing, superimposed equatorward motion of the equatorward edge of the radar backscatter as the auroral oval expands. Within this backscatter region, there is a poleward gradient in the Doppler spectral width, which we believe to correspond to latitudinal structure in auroral emissions and magnetospheric precipitation. During the growth phase the ionospheric convection is dominated by a relatively smooth largescale flow pattern consistent with the expanding DP2 (convection) auroral electrojets. Immediately prior to substorm onset the ionospheric convection observed by the radar in the midnight sector has a predominantly equatorward flow component. At substorm onset a dramatic change occurs and a poleward flow component prevails. The timing and location are quite remarkable. The timing of the flow change is within one minute of the dispersionless injection observed at geostationary orbit and the Pi2 magnetic signature on the ground. The location shows that this sudden change in flow is due to the effect of the upward field aligned current of the substorm current wedge imposed directly within the Halley radar field of view.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A high-frequency transmitter located at Clyde River, NWT, Canada, and a receiver located near Boston, USA, provide a 3200 km trans-auroral, near-meridional propagation path over which the propagation characteristics have been measured. Out of the fourteen frequencies in the HF band sampled every hour for the duration of the experimental campaign (16 January-8 February 1989), the signal level measurements of 6.800 MHz transmissions were selected in order to determine the extent and occurrence of auroral absorption. The median level of auroral absorption along the path is found to increase with geomagnetic activity, quantified by the index Kp, with the increase being greater in the post-midnight sector than in the pre-midnight sector. This asymmetric behaviour is attributed to the precipitation of high energy electrons into the midnight and morning sector auroral D region. The measured diurnal variation in the median level of absorption is consistent with previous models describing the extent and magnitude of auroral absorption and electron precipitation. Individual substorms, identified from geosynchronous satellite data, are found to cause short-lived absorption events in the HF signal level of \sim30 dB at 6.800 MHz. The occurrence of substorm correlated auroral absorption events is confined to the midnight and morning sectors, consistent with the location of the electron precipitation. The magnitude of absorption is related to the magnetotail stress during the substorm growth phase and the magnetotail relaxation during the substorm expansion phase onset. The absorption magnitude and the occurrence of substorms during the period of the campaign increase at times of high Kp, leading to an increase in median auroral absorption during disturbed periods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 18 (2000), S. 1097-1107 
    ISSN: 0992-7689
    Keywords: Ionosphere (auroral ionosphere; electric fields and currents) ; Magnetospheric physics (storms and substorms)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetosphere’s reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 427 (2004), S. 63-65 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Succulent Karoo is an arid region, situated along the west coast of southern Africa. Floristically this region is part of the Greater Cape Flora and is considered one of the Earth's 25 biodiversity hotspots. Of about 5,000 species occurring in this region, more than 40% are endemic. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Cape flora of South Africa grows in a continental area with many diverse and endemic species. We need to understand the evolutionary origins and ages of such ‘hotspots’ to conserve them effectively. In volcanic islands the timing of diversification can be precisely measured with ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...