ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (59)
  • Female  (42)
  • Gas chromatography
  • Nature Publishing Group (NPG)  (75)
  • 2015-2019  (75)
  • 1995-1999
  • 1980-1984
  • 2016  (75)
Collection
Publisher
Years
  • 2015-2019  (75)
  • 1995-1999
  • 1980-1984
Year
  • 1
    Publication Date: 2016-02-26
    Description: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-beta, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailey, Peter -- Chang, David K -- Nones, Katia -- Johns, Amber L -- Patch, Ann-Marie -- Gingras, Marie-Claude -- Miller, David K -- Christ, Angelika N -- Bruxner, Tim J C -- Quinn, Michael C -- Nourse, Craig -- Murtaugh, L Charles -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Fink, Lynn -- Holmes, Oliver -- Chin, Venessa -- Anderson, Matthew J -- Kazakoff, Stephen -- Leonard, Conrad -- Newell, Felicity -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wilson, Peter J -- Cloonan, Nicole -- Kassahn, Karin S -- Taylor, Darrin -- Quek, Kelly -- Robertson, Alan -- Pantano, Lorena -- Mincarelli, Laura -- Sanchez, Luis N -- Evers, Lisa -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chantrill, Lorraine A -- Mawson, Amanda -- Humphris, Jeremy -- Chou, Angela -- Pajic, Marina -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Merrett, Neil D -- Toon, Christopher W -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Moran-Jones, Kim -- Jamieson, Nigel B -- Graham, Janet S -- Duthie, Fraser -- Oien, Karin -- Hair, Jane -- Grutzmann, Robert -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Rusev, Borislav -- Capelli, Paola -- Salvia, Roberto -- Tortora, Giampaolo -- Mukhopadhyay, Debabrata -- Petersen, Gloria M -- Australian Pancreatic Cancer Genome Initiative -- Munzy, Donna M -- Fisher, William E -- Karim, Saadia A -- Eshleman, James R -- Hruban, Ralph H -- Pilarsky, Christian -- Morton, Jennifer P -- Sansom, Owen J -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Bailey, Ulla-Maja Hagbo -- Hofmann, Oliver -- Sutherland, Robert L -- Wheeler, David A -- Gill, Anthony J -- Gibbs, Richard A -- Pearson, John V -- Waddell, Nicola -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Z/14/Z/Wellcome Trust/United Kingdom -- A12481/Cancer Research UK/United Kingdom -- A18076/Cancer Research UK/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):47-52. doi: 10.1038/nature16965. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. ; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. ; QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. ; Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. ; Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. ; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. ; Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. ; Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. ; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. ; School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. ; University of Sydney, Sydney, New South Wales 2006, Australia. ; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. ; School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. ; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. ; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. ; GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. ; Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Mayo Clinic, Rochester, Minnesota 55905, USA. ; Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. ; Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. ; University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Carcinoma, Pancreatic ; Ductal/classification/genetics/immunology/metabolism/pathology ; Cell Line, Tumor ; DNA Methylation ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; *Genomics ; Hepatocyte Nuclear Factor 3-beta/genetics ; Hepatocyte Nuclear Factor 3-gamma/genetics ; Histone Demethylases/genetics ; Homeodomain Proteins/genetics ; Humans ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Pancreatic Neoplasms/*classification/*genetics/immunology/metabolism/pathology ; Prognosis ; Receptors, Cytoplasmic and Nuclear/genetics ; Survival Analysis ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic ; Transcriptome ; Tumor Suppressor Protein p53/genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Travis K -- Jordan, Robert -- Lo, Michael K -- Ray, Adrian S -- Mackman, Richard L -- Soloveva, Veronica -- Siegel, Dustin -- Perron, Michel -- Bannister, Roy -- Hui, Hon C -- Larson, Nate -- Strickley, Robert -- Wells, Jay -- Stuthman, Kelly S -- Van Tongeren, Sean A -- Garza, Nicole L -- Donnelly, Ginger -- Shurtleff, Amy C -- Retterer, Cary J -- Gharaibeh, Dima -- Zamani, Rouzbeh -- Kenny, Tara -- Eaton, Brett P -- Grimes, Elizabeth -- Welch, Lisa S -- Gomba, Laura -- Wilhelmsen, Catherine L -- Nichols, Donald K -- Nuss, Jonathan E -- Nagle, Elyse R -- Kugelman, Jeffrey R -- Palacios, Gustavo -- Doerffler, Edward -- Neville, Sean -- Carra, Ernest -- Clarke, Michael O -- Zhang, Lijun -- Lew, Willard -- Ross, Bruce -- Wang, Queenie -- Chun, Kwon -- Wolfe, Lydia -- Babusis, Darius -- Park, Yeojin -- Stray, Kirsten M -- Trancheva, Iva -- Feng, Joy Y -- Barauskas, Ona -- Xu, Yili -- Wong, Pamela -- Braun, Molly R -- Flint, Mike -- McMullan, Laura K -- Chen, Shan-Shan -- Fearns, Rachel -- Swaminathan, Swami -- Mayers, Douglas L -- Spiropoulou, Christina F -- Lee, William A -- Nichol, Stuart T -- Cihlar, Tomas -- Bavari, Sina -- R01 AI113321/AI/NIAID NIH HHS/ -- R01AI113321/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):381-5. doi: 10.1038/nature17180. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA. ; United States Army Medical Research Institute of Infectious Diseases, Therapeutic Development Center, Frederick, Maryland 21702, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. ; Boston University School of Medicine, Boston, Massachusetts 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934220" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/pharmacokinetics/pharmacology/therapeutic use ; Amino Acid Sequence ; Animals ; Antiviral Agents/pharmacokinetics/pharmacology/*therapeutic use ; Cell Line, Tumor ; Ebolavirus/drug effects ; Female ; HeLa Cells ; Hemorrhagic Fever, Ebola/*drug therapy/prevention & control ; Humans ; Macaca mulatta/*virology ; Male ; Molecular Sequence Data ; Organ Specificity ; Prodrugs/pharmacokinetics/pharmacology/therapeutic use ; Ribonucleotides/pharmacokinetics/pharmacology/*therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-04
    Description: The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 x 10(-3) and 1.42 x 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quick, Joshua -- Loman, Nicholas J -- Duraffour, Sophie -- Simpson, Jared T -- Severi, Ettore -- Cowley, Lauren -- Bore, Joseph Akoi -- Koundouno, Raymond -- Dudas, Gytis -- Mikhail, Amy -- Ouedraogo, Nobila -- Afrough, Babak -- Bah, Amadou -- Baum, Jonathan H J -- Becker-Ziaja, Beate -- Boettcher, Jan Peter -- Cabeza-Cabrerizo, Mar -- Camino-Sanchez, Alvaro -- Carter, Lisa L -- Doerrbecker, Juliane -- Enkirch, Theresa -- Garcia-Dorival, Isabel -- Hetzelt, Nicole -- Hinzmann, Julia -- Holm, Tobias -- Kafetzopoulou, Liana Eleni -- Koropogui, Michel -- Kosgey, Abigael -- Kuisma, Eeva -- Logue, Christopher H -- Mazzarelli, Antonio -- Meisel, Sarah -- Mertens, Marc -- Michel, Janine -- Ngabo, Didier -- Nitzsche, Katja -- Pallasch, Elisa -- Patrono, Livia Victoria -- Portmann, Jasmine -- Repits, Johanna Gabriella -- Rickett, Natasha Y -- Sachse, Andreas -- Singethan, Katrin -- Vitoriano, Ines -- Yemanaberhan, Rahel L -- Zekeng, Elsa G -- Racine, Trina -- Bello, Alexander -- Sall, Amadou Alpha -- Faye, Ousmane -- Faye, Oumar -- Magassouba, N'Faly -- Williams, Cecelia V -- Amburgey, Victoria -- Winona, Linda -- Davis, Emily -- Gerlach, Jon -- Washington, Frank -- Monteil, Vanessa -- Jourdain, Marine -- Bererd, Marion -- Camara, Alimou -- Somlare, Hermann -- Camara, Abdoulaye -- Gerard, Marianne -- Bado, Guillaume -- Baillet, Bernard -- Delaune, Deborah -- Nebie, Koumpingnin Yacouba -- Diarra, Abdoulaye -- Savane, Yacouba -- Pallawo, Raymond Bernard -- Gutierrez, Giovanna Jaramillo -- Milhano, Natacha -- Roger, Isabelle -- Williams, Christopher J -- Yattara, Facinet -- Lewandowski, Kuiama -- Taylor, James -- Rachwal, Phillip -- Turner, Daniel J -- Pollakis, Georgios -- Hiscox, Julian A -- Matthews, David A -- O'Shea, Matthew K -- Johnston, Andrew McD -- Wilson, Duncan -- Hutley, Emma -- Smit, Erasmus -- Di Caro, Antonino -- Wolfel, Roman -- Stoecker, Kilian -- Fleischmann, Erna -- Gabriel, Martin -- Weller, Simon A -- Koivogui, Lamine -- Diallo, Boubacar -- Keita, Sakoba -- Rambaut, Andrew -- Formenty, Pierre -- Gunther, Stephan -- Carroll, Miles W -- Medical Research Council/United Kingdom -- England -- Nature. 2016 Feb 11;530(7589):228-32. doi: 10.1038/nature16996. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK. ; The European Mobile Laboratory Consortium, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada. ; Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada. ; European Centre for Disease Prevention and Control (ECDC), 171 65 Solna, Sweden. ; National Infection Service, Public Health England, London NW9 5EQ, UK. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 2FL, UK. ; Postgraduate Training for Applied Epidemiology (PAE, German FETP), Robert Koch Institute, D-13302 Berlin, Germany. ; National Infection Service, Public Health England, Porton Down, Wiltshire SP4 0JG, UK. ; Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland. ; Robert Koch Institute, D-13302 Berlin, Germany. ; University College London, London WC1E 6BT, UK. ; Paul-Ehrlich-Institut, Division of Veterinary Medicine, D-63225 Langen, Germany. ; Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK. ; Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, Leuven B-3000, Belgium. ; Ministry of Health Guinea, Conakry BP 585, Guinea. ; Kenya Medical Research Institute, Nairobi P.O. BOX 54840 - 00200, Kenya. ; National Institute for Infectious Diseases L. Spallanzani, 00149 Rome, Italy. ; Friedrich-Loeffler-Institute, D-17493 Greifswald, Germany. ; Federal Office for Civil Protection, Spiez Laboratory, 3700 Spiez, Switzerland. ; Janssen-Cilag, Stockholm, Box 7073 - 19207, Sweden. ; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK. ; Institute of Virology, Technische Universitat Munchen, D-81675 Munich, Germany. ; Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. ; Institut Pasteur Dakar, Dakar, DP 220 Senegal. ; Laboratoire de Fievres Hemorragiques de Guinee, Conakry BP 5680, Guinea. ; Sandia National Laboratories, PO Box 5800 MS1363, Albuquerque, New Mexico 87185-1363, USA. ; Ratoma Ebola Diagnostic Center, Conakry, Guinea. ; MRIGlobal, Kansas City, Missouri 64110-2241, USA. ; Expertise France, Laboratoire K-plan de Forecariah en Guinee, 75006 Paris, France. ; Federation des Laboratoires - HIA Begin, 94163 Saint-Mande cedex, France. ; Laboratoire de Biologie - Centre de Traitement des Soignants, Conakry, Guinea. ; World Health Organization, Conakry BP 817, Guinea. ; London School of Hygiene and Tropical Medicine, London EC1E 7HT, UK. ; Norwegian Institute of Public Health, PO Box 4404 Nydalen, 0403 Oslo, Norway. ; Public Health Wales, Cardiff CF11 9LJ, UK. ; Defence Science and Technology Laboratory (Dstl) Porton Down, Salisbury SP4 0JQ, UK. ; Oxford Nanopore Technologies, Oxford OX4 4GA, UK. ; Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK. ; Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham B15 2TH, UK. ; Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham B15 2TH, UK. ; Queen Elizabeth Hospital, Birmingham B12 2TH, UK. ; Bundeswehr Institute of Microbiology, D-80937 Munich, Germany. ; Institut National de Sante Publique, Conakry BP 1147, Guinea. ; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA. ; Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 2FL, UK. ; University of Southampton, South General Hospital, Southampton SO16 6YD, UK. ; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, PHE Porton Down, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840485" target="_blank"〉PubMed〈/a〉
    Keywords: Aircraft ; Disease Outbreaks/statistics & numerical data ; Ebolavirus/classification/*genetics/pathogenicity ; *Epidemiological Monitoring ; Genome, Viral/*genetics ; Guinea/epidemiology ; Hemorrhagic Fever, Ebola/*epidemiology/*virology ; Humans ; Mutagenesis/genetics ; Mutation Rate ; Sequence Analysis, DNA/*instrumentation/*methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-05
    Description: Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5(+) intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-delta) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells), and pharmacological activation of PPAR-delta recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-delta-dependent manner. Notably, HFD- and agonist-activated PPAR-delta signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-delta signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-delta activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beyaz, Semir -- Mana, Miyeko D -- Roper, Jatin -- Kedrin, Dmitriy -- Saadatpour, Assieh -- Hong, Sue-Jean -- Bauer-Rowe, Khristian E -- Xifaras, Michael E -- Akkad, Adam -- Arias, Erika -- Pinello, Luca -- Katz, Yarden -- Shinagare, Shweta -- Abu-Remaileh, Monther -- Mihaylova, Maria M -- Lamming, Dudley W -- Dogum, Rizkullah -- Guo, Guoji -- Bell, George W -- Selig, Martin -- Nielsen, G Petur -- Gupta, Nitin -- Ferrone, Cristina R -- Deshpande, Vikram -- Yuan, Guo-Cheng -- Orkin, Stuart H -- Sabatini, David M -- Yilmaz, Omer H -- AI47389/AI/NIAID NIH HHS/ -- DK043351/DK/NIDDK NIH HHS/ -- K08 CA198002/CA/NCI NIH HHS/ -- K99 AG041765/AG/NIA NIH HHS/ -- K99 AG045144/AG/NIA NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 AG041765/AG/NIA NIH HHS/ -- R00 AG045144/AG/NIA NIH HHS/ -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32DK007191/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 3;531(7592):53-8. doi: 10.1038/nature17173.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA. ; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Gastroenterology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA. ; Departments of Pathology, Gastroenterology, and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, Massachusetts 02142, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA. ; Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Missisippi 39216, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935695" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; Cell Self Renewal/drug effects ; Cell Transformation, Neoplastic/*drug effects ; Colonic Neoplasms/*pathology ; Diet, High-Fat/*adverse effects ; Female ; Genes, APC ; Humans ; Intestines/*pathology ; Male ; Mice ; Obesity/chemically induced/pathology ; Organoids/drug effects/metabolism/pathology ; PPAR delta/metabolism ; Signal Transduction/drug effects ; Stem Cell Niche/drug effects ; Stem Cells/*drug effects/metabolism/*pathology ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-07
    Description: Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruibal, Paula -- Oestereich, Lisa -- Ludtke, Anja -- Becker-Ziaja, Beate -- Wozniak, David M -- Kerber, Romy -- Korva, Misa -- Cabeza-Cabrerizo, Mar -- Bore, Joseph A -- Koundouno, Fara Raymond -- Duraffour, Sophie -- Weller, Romy -- Thorenz, Anja -- Cimini, Eleonora -- Viola, Domenico -- Agrati, Chiara -- Repits, Johanna -- Afrough, Babak -- Cowley, Lauren A -- Ngabo, Didier -- Hinzmann, Julia -- Mertens, Marc -- Vitoriano, Ines -- Logue, Christopher H -- Boettcher, Jan Peter -- Pallasch, Elisa -- Sachse, Andreas -- Bah, Amadou -- Nitzsche, Katja -- Kuisma, Eeva -- Michel, Janine -- Holm, Tobias -- Zekeng, Elsa-Gayle -- Garcia-Dorival, Isabel -- Wolfel, Roman -- Stoecker, Kilian -- Fleischmann, Erna -- Strecker, Thomas -- Di Caro, Antonino -- Avsic-Zupanc, Tatjana -- Kurth, Andreas -- Meschi, Silvia -- Mely, Stephane -- Newman, Edmund -- Bocquin, Anne -- Kis, Zoltan -- Kelterbaum, Anne -- Molkenthin, Peter -- Carletti, Fabrizio -- Portmann, Jasmine -- Wolff, Svenja -- Castilletti, Concetta -- Schudt, Gordian -- Fizet, Alexandra -- Ottowell, Lisa J -- Herker, Eva -- Jacobs, Thomas -- Kretschmer, Birte -- Severi, Ettore -- Ouedraogo, Nobila -- Lago, Mar -- Negredo, Anabel -- Franco, Leticia -- Anda, Pedro -- Schmiedel, Stefan -- Kreuels, Benno -- Wichmann, Dominic -- Addo, Marylyn M -- Lohse, Ansgar W -- De Clerck, Hilde -- Nanclares, Carolina -- Jonckheere, Sylvie -- Van Herp, Michel -- Sprecher, Armand -- Xiaojiang, Gao -- Carrington, Mary -- Miranda, Osvaldo -- Castro, Carlos M -- Gabriel, Martin -- Drury, Patrick -- Formenty, Pierre -- Diallo, Boubacar -- Koivogui, Lamine -- Magassouba, N'Faly -- Carroll, Miles W -- Gunther, Stephan -- Munoz-Fontela, Cesar -- HHSN261200800001E/PHS HHS/ -- Z01 BC010791-01/Intramural NIH HHS/ -- Z01 BC010791-02/Intramural NIH HHS/ -- Z01 BC010792-01/Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):100-4. doi: 10.1038/nature17949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany. ; Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany. ; German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, and Marburg, Germany. ; European Mobile Laboratory Consortium, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia. ; Institute of Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, 30625 Hannover, Germany. ; Hannover Medical School, 30625 Hannover, Germany. ; National Institute for Infectious Diseases 'Lazzaro Spallanzani', 00149 Rome, Italy. ; Public Health England, Porton Down, Salisbury SP4 0JG, UK. ; Public Health England, Colindale Ave, London NW9 5EQ, UK. ; Robert Koch Institute, 13353 Berlin, Germany. ; Friedrich Loeffler Institute, 17493 Greifswald-Island of Riems, Germany. ; Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland. ; Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK. ; Bundeswehr Institute of Microbiology, 80937 Munich, Germany. ; Institute of Virology, Philipps University, 35043 Marburg, Germany. ; Laboratoire P4-Jean Merieux, US003 INSERM, 69365 Lyon, France. ; National Center for Epidemiology, Hungarian National Biosafety Laboratory, H1097 Budapest, Hungary. ; European Centre for Disease Prevention and Control, 171 65 Solna, Sweden. ; Federal Office for Civil Protection, CH-3700 Spiez, Switzerland. ; Unite de Biologie des Infections Virales Emergentes, Institut Pasteur, 69365 Lyon, France. ; Eurice, European Research and Project Office, 10115 Berlin, Germany. ; Infectious Diseases Unit, Internal Medicine Service, Hospital La Paz, 28046 Madrid, Spain. ; National Center of Microbiology, Institute of Health 'Carlos III', 28220 Madrid, Spain. ; University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. ; Medecins sans Frontieres, B-1050 Brussels, Belgium. ; Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; Hospital Militar Central Dr. Carlos J. Finlay, 11400 Havana, Cuba. ; World Health Organization, 1211 Geneva 27, Switzerland. ; Institut National de Sante Publique, 2101 Conakry, Guinea. ; Universite Gamal Abdel Nasser de Conakry, CHU Donka, 2101 Conakry, Guinea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27147028" target="_blank"〉PubMed〈/a〉
    Keywords: CTLA-4 Antigen/metabolism ; Ebolavirus/*immunology ; Female ; Flow Cytometry ; Guinea/epidemiology ; Hemorrhagic Fever, Ebola/*immunology/mortality/*physiopathology ; Humans ; Inflammation Mediators/immunology ; Longitudinal Studies ; Lymphocyte Activation ; Male ; Patient Discharge ; Programmed Cell Death 1 Receptor/metabolism ; Survivors ; T-Lymphocytes/*immunology/metabolism ; Viral Load
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-07
    Description: Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833566/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833566/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seifert, Lena -- Werba, Gregor -- Tiwari, Shaun -- Giao Ly, Nancy Ngoc -- Alothman, Sara -- Alqunaibit, Dalia -- Avanzi, Antonina -- Barilla, Rocky -- Daley, Donnele -- Greco, Stephanie H -- Torres-Hernandez, Alejandro -- Pergamo, Matthew -- Ochi, Atsuo -- Zambirinis, Constantinos P -- Pansari, Mridul -- Rendon, Mauricio -- Tippens, Daniel -- Hundeyin, Mautin -- Mani, Vishnu R -- Hajdu, Cristina -- Engle, Dannielle -- Miller, George -- CA155649/CA/NCI NIH HHS/ -- CA168611/CA/NCI NIH HHS/ -- CA193111/CA/NCI NIH HHS/ -- P30CA016087/CA/NCI NIH HHS/ -- R01 CA168611/CA/NCI NIH HHS/ -- T32 CA193111/CA/NCI NIH HHS/ -- UL1 TR000038/TR/NCATS NIH HHS/ -- England -- Nature. 2016 Apr 14;532(7598):245-9. doi: 10.1038/nature17403. Epub 2016 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. ; Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. ; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. ; Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27049944" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/immunology/metabolism/pathology ; Animals ; Apoptosis/drug effects ; *Carcinogenesis/drug effects ; Carcinoma, Pancreatic Ductal/immunology/metabolism/pathology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chemokine CXCL1/antagonists & inhibitors/*metabolism ; Deoxycytidine/analogs & derivatives/pharmacology ; Disease Progression ; Female ; GTPase-Activating Proteins/metabolism ; Gene Expression Regulation, Neoplastic ; Humans ; *Immune Tolerance ; Lectins, C-Type/immunology/*metabolism ; Male ; Membrane Proteins/immunology/*metabolism ; Mice ; Mice, Inbred C57BL ; *Necrosis ; Pancreatic Neoplasms/*immunology/metabolism/*pathology ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Signal Transduction ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-10
    Description: The repair and regeneration of tissues using endogenous stem cells represents an ultimate goal in regenerative medicine. To our knowledge, human lens regeneration has not yet been demonstrated. Currently, the only treatment for cataracts, the leading cause of blindness worldwide, is to extract the cataractous lens and implant an artificial intraocular lens. However, this procedure poses notable risks of complications. Here we isolate lens epithelial stem/progenitor cells (LECs) in mammals and show that Pax6 and Bmi1 are required for LEC renewal. We design a surgical method of cataract removal that preserves endogenous LECs and achieves functional lens regeneration in rabbits and macaques, as well as in human infants with cataracts. Our method differs conceptually from current practice, as it preserves endogenous LECs and their natural environment maximally, and regenerates lenses with visual function. Our approach demonstrates a novel treatment strategy for cataracts and provides a new paradigm for tissue regeneration using endogenous stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Haotian -- Ouyang, Hong -- Zhu, Jie -- Huang, Shan -- Liu, Zhenzhen -- Chen, Shuyi -- Cao, Guiqun -- Li, Gen -- Signer, Robert A J -- Xu, Yanxin -- Chung, Christopher -- Zhang, Ying -- Lin, Danni -- Patel, Sherrina -- Wu, Frances -- Cai, Huimin -- Hou, Jiayi -- Wen, Cindy -- Jafari, Maryam -- Liu, Xialin -- Luo, Lixia -- Zhu, Jin -- Qiu, Austin -- Hou, Rui -- Chen, Baoxin -- Chen, Jiangna -- Granet, David -- Heichel, Christopher -- Shang, Fu -- Li, Xuri -- Krawczyk, Michal -- Skowronska-Krawczyk, Dorota -- Wang, Yujuan -- Shi, William -- Chen, Daniel -- Zhong, Zheng -- Zhong, Sheng -- Zhang, Liangfang -- Chen, Shaochen -- Morrison, Sean J -- Maas, Richard L -- Zhang, Kang -- Liu, Yizhi -- R37 AG024945/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 17;531(7594):323-8. doi: 10.1038/nature17181. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Howard Hughes Medical Institute, Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Clinical and Translational Research Institute, University of California, San Diego, La Jolla, California 92093, USA. ; Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cataract/congenital/pathology/physiopathology/*therapy ; Cataract Extraction ; Epithelial Cells/cytology/metabolism ; Eye Proteins/metabolism ; Homeodomain Proteins/metabolism ; Homeostasis ; Humans ; Lens, Crystalline/*cytology/*physiology ; Macaca ; Paired Box Transcription Factors/metabolism ; Polycomb Repressive Complex 1/metabolism ; Proto-Oncogene Proteins/metabolism ; *Recovery of Function ; Regeneration/*physiology ; Repressor Proteins/metabolism ; Stem Cells/*cytology/metabolism ; Vision, Ocular/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-05
    Description: Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in beta-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833579/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833579/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaur, Amanpreet -- Webster, Marie R -- Marchbank, Katie -- Behera, Reeti -- Ndoye, Abibatou -- Kugel, Curtis H 3rd -- Dang, Vanessa M -- Appleton, Jessica -- O'Connell, Michael P -- Cheng, Phil -- Valiga, Alexander A -- Morissette, Rachel -- McDonnell, Nazli B -- Ferrucci, Luigi -- Kossenkov, Andrew V -- Meeth, Katrina -- Tang, Hsin-Yao -- Yin, Xiangfan -- Wood, William H 3rd -- Lehrmann, Elin -- Becker, Kevin G -- Flaherty, Keith T -- Frederick, Dennie T -- Wargo, Jennifer A -- Cooper, Zachary A -- Tetzlaff, Michael T -- Hudgens, Courtney -- Aird, Katherine M -- Zhang, Rugang -- Xu, Xiaowei -- Liu, Qin -- Bartlett, Edmund -- Karakousis, Giorgos -- Eroglu, Zeynep -- Lo, Roger S -- Chan, Matthew -- Menzies, Alexander M -- Long, Georgina V -- Johnson, Douglas B -- Sosman, Jeffrey -- Schilling, Bastian -- Schadendorf, Dirk -- Speicher, David W -- Bosenberg, Marcus -- Ribas, Antoni -- Weeraratna, Ashani T -- P01 CA 114046-06/CA/NCI NIH HHS/ -- P01 CA114046/CA/NCI NIH HHS/ -- P30 CA010815/CA/NCI NIH HHS/ -- P50 CA093372/CA/NCI NIH HHS/ -- R01 CA174746/CA/NCI NIH HHS/ -- R01 CA174746-01/CA/NCI NIH HHS/ -- T32 CA009171/CA/NCI NIH HHS/ -- T32 CA9171-36/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2016 Apr 14;532(7598):250-4. doi: 10.1038/nature17392. Epub 2016 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wistar Institute, Philadelphia, Pennsylvania 19104, USA. ; University of the Sciences, Philadelphia, Pennsylvania 19104, USA. ; Department of Dermatology, University of Zurich, Zurich CH-8006, Switzerland. ; The National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA. ; Department of Dermatology and Pathology, Yale University, New Haven, Connecticut 06511, USA. ; Massachusetts General Hospital Cancer Center, Developmental Therapeutics, Boston 02114, Massachusetts, USA. ; Department of Surgical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Departments of Surgery and Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Medical Oncology, City of Hope Medical Center, Duarte, California 91010, USA. ; Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, California 90095, USA. ; Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead 2145, Australia. ; Melanoma Institute Australia and The University of Sydney, Sydney 2000, Australia. ; Department of Medicine, Vanderbilt University Medical Center, Nashville Tennessee 37232, USA. ; Department of Dermatology, University Hospital, West German Cancer Center, University Duesburg-Essen, Essen, Germany. ; German Cancer Consortium (DKTK), Heidelberg 45127, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27042933" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aging/*metabolism ; Animals ; Cell Line, Tumor ; Culture Media, Conditioned/pharmacology ; DNA Damage ; DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism ; Disease Progression ; *Drug Resistance, Neoplasm ; Fibroblasts/secretion ; Humans ; Indoles/pharmacology/therapeutic use ; Male ; Melanoma/blood supply/*drug therapy/genetics/*pathology ; Membrane Proteins/*metabolism/secretion ; Mice ; Microphthalmia-Associated Transcription Factor/metabolism ; Middle Aged ; Molecular Targeted Therapy ; *Neoplasm Metastasis ; Neovascularization, Pathologic ; Oxidative Stress ; Phenotype ; Reactive Oxygen Species/metabolism ; Sulfonamides/pharmacology/therapeutic use ; *Tumor Microenvironment ; Wnt Signaling Pathway ; Wnt1 Protein/antagonists & inhibitors ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-05
    Description: Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Non-alcoholic fatty liver disease (NAFLD) affects a large proportion of the US population and is considered to be a metabolic predisposition to liver cancer. However, the role of adaptive immune responses in NAFLD-promoted HCC is largely unknown. Here we show, in mouse models and human samples, that dysregulation of lipid metabolism in NAFLD causes a selective loss of intrahepatic CD4(+) but not CD8(+) T lymphocytes, leading to accelerated hepatocarcinogenesis. We also demonstrate that CD4(+) T lymphocytes have greater mitochondrial mass than CD8(+) T lymphocytes and generate higher levels of mitochondrially derived reactive oxygen species (ROS). Disruption of mitochondrial function by linoleic acid, a fatty acid accumulated in NAFLD, causes more oxidative damage than other free fatty acids such as palmitic acid, and mediates selective loss of intrahepatic CD4(+) T lymphocytes. In vivo blockade of ROS reversed NAFLD-induced hepatic CD4(+) T lymphocyte decrease and delayed NAFLD-promoted HCC. Our results provide an unexpected link between lipid dysregulation and impaired anti-tumour surveillance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786464/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786464/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Chi -- Kesarwala, Aparna H -- Eggert, Tobias -- Medina-Echeverz, Jose -- Kleiner, David E -- Jin, Ping -- Stroncek, David F -- Terabe, Masaki -- Kapoor, Veena -- ElGindi, Mei -- Han, Miaojun -- Thornton, Angela M -- Zhang, Haibo -- Egger, Michele -- Luo, Ji -- Felsher, Dean W -- McVicar, Daniel W -- Weber, Achim -- Heikenwalder, Mathias -- Greten, Tim F -- ZIA BC011345-06/Intramural NIH HHS/ -- ZIABC011303/PHS HHS/ -- England -- Nature. 2016 Mar 10;531(7593):253-7. doi: 10.1038/nature16969. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Institute of Surgical Pathology, University and University Hospital Zurich, Zurich 8091, Switzerland. ; Division of Oncology, Department of Medicine and Pathology, Stanford University, California 94305, USA. ; Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA. ; Institute of Virology, Technische Universitat Munchen/Helmholtz Zentrum Munchen, Munich 81675, Germany. ; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/immunology/metabolism/*pathology ; CD8-Positive T-Lymphocytes/immunology/pathology ; *Carcinogenesis/immunology/pathology ; Carcinoma, Hepatocellular/*immunology/metabolism/*pathology ; Case-Control Studies ; Choline/metabolism ; Diet ; Disease Models, Animal ; Genes, myc ; Hepatocytes/metabolism/pathology ; Humans ; Linoleic Acid/metabolism ; Lipid Metabolism ; Liver/immunology/pathology ; Liver Neoplasms/*immunology/metabolism/*pathology ; Male ; Methionine/deficiency ; Mice ; Mice, Inbred C57BL ; Mitochondria/metabolism/pathology ; Non-alcoholic Fatty Liver Disease/*immunology/metabolism/pathology ; Oxidative Stress ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-10
    Description: Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thal, David M -- Sun, Bingfa -- Feng, Dan -- Nawaratne, Vindhya -- Leach, Katie -- Felder, Christian C -- Bures, Mark G -- Evans, David A -- Weis, William I -- Bachhawat, Priti -- Kobilka, Tong Sun -- Sexton, Patrick M -- Kobilka, Brian K -- Christopoulos, Arthur -- U19 GM106990/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):335-40. doi: 10.1038/nature17188. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia. ; ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA. ; Neuroscience, Eli Lilly, Indianapolis, Indiana 46285, USA. ; Computational Chemistry and Chemoinformatics, Eli Lilly, Indianapolis, Indiana 46285, USA. ; Computational Chemistry and Chemoinformatics, Eli Lilly, Sunninghill Road, Windlesham GU20 6PH, UK. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958838" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Allosteric Regulation/drug effects ; Allosteric Site/drug effects ; Alzheimer Disease ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Models, Molecular ; Nicotinic Acids/metabolism/pharmacology ; Receptor, Muscarinic M1/*chemistry/metabolism ; Receptor, Muscarinic M4/*chemistry/metabolism ; Schizophrenia ; Static Electricity ; Substrate Specificity ; Surface Properties ; Thiophenes/metabolism/pharmacology ; Tiotropium Bromide/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...