ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-08
    Description: Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury Cell Death and Disease 6, e1759 (May 2015). doi:10.1038/cddis.2015.126 Authors: M Deutsch, C S Graffeo, R Rokosh, M Pansari, A Ochi, E M Levie, E Van Heerden, D M Tippens, S Greco, R Barilla, L Tomkötter, C P Zambirinis, N Avanzi, R Gulati, H L Pachter, A Torres-Hernandez, A Eisenthal, D Daley & G Miller
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-07
    Description: Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833566/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833566/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seifert, Lena -- Werba, Gregor -- Tiwari, Shaun -- Giao Ly, Nancy Ngoc -- Alothman, Sara -- Alqunaibit, Dalia -- Avanzi, Antonina -- Barilla, Rocky -- Daley, Donnele -- Greco, Stephanie H -- Torres-Hernandez, Alejandro -- Pergamo, Matthew -- Ochi, Atsuo -- Zambirinis, Constantinos P -- Pansari, Mridul -- Rendon, Mauricio -- Tippens, Daniel -- Hundeyin, Mautin -- Mani, Vishnu R -- Hajdu, Cristina -- Engle, Dannielle -- Miller, George -- CA155649/CA/NCI NIH HHS/ -- CA168611/CA/NCI NIH HHS/ -- CA193111/CA/NCI NIH HHS/ -- P30CA016087/CA/NCI NIH HHS/ -- R01 CA168611/CA/NCI NIH HHS/ -- T32 CA193111/CA/NCI NIH HHS/ -- UL1 TR000038/TR/NCATS NIH HHS/ -- England -- Nature. 2016 Apr 14;532(7598):245-9. doi: 10.1038/nature17403. Epub 2016 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. ; Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. ; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA. ; Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27049944" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/immunology/metabolism/pathology ; Animals ; Apoptosis/drug effects ; *Carcinogenesis/drug effects ; Carcinoma, Pancreatic Ductal/immunology/metabolism/pathology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chemokine CXCL1/antagonists & inhibitors/*metabolism ; Deoxycytidine/analogs & derivatives/pharmacology ; Disease Progression ; Female ; GTPase-Activating Proteins/metabolism ; Gene Expression Regulation, Neoplastic ; Humans ; *Immune Tolerance ; Lectins, C-Type/immunology/*metabolism ; Male ; Membrane Proteins/immunology/*metabolism ; Mice ; Mice, Inbred C57BL ; *Necrosis ; Pancreatic Neoplasms/*immunology/metabolism/*pathology ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Signal Transduction ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...