ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-26
    Description: Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia–reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-28
    Description: Sirtuins can promote deacetylation of a wide range of substrates in diverse cellular compartments and regulate many cellular processes(1),(2). Recently Narayan et al., reported that SIRT2 was required for necroptosis based on their findings that SIRT2 inhibition, knock-down or knock-out prevented necroptosis. We sought to confirm and explore the role of SIRT2 in necroptosis and tested four different sources of the SIRT2 inhibitor AGK2, three independent siRNAs against SIRT2, and cells from two independently generated Sirt2-/- mouse strains, however we were unable to show that inhibiting or depleting SIRT2 protected cells from necroptosis. Furthermore, Sirt2-/- mice succumbed to TNF induced Systemic Inflammatory Response Syndrome (SIRS) more rapidly than wild type mice while Ripk3-/- mice were resistant. Our results therefore question the importance of SIRT2 in the necroptosis cell death pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005920/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005920/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newton, Kim -- Hildebrand, Joanne M -- Shen, Zhirong -- Rodriguez, Diego -- Alvarez-Diaz, Silvia -- Petersen, Sean -- Shah, Saumil -- Dugger, Debra L -- Huang, Chunzi -- Auwerx, Johan -- Vandenabeele, Peter -- Green, Douglas R -- Ashkenazi, Avi -- Dixit, Vishva M -- Kaiser, William J -- Strasser, Andreas -- Degterev, Alexei -- Silke, John -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI044828/AI/NIAID NIH HHS/ -- R01 CA169291/CA/NCI NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):E4-6. doi: 10.1038/nature13024.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genentech, Inc., South San Francisco, California 94080, USA. ; 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia. ; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China. ; Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Biochemistry, Tufts University, Boston, Massachusetts 02111, USA. ; Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA. ; Laboratory of Integrative and Systems Physiology, EPFL, CH-1015 Lausanne, Switzerland. ; 1] Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, 9052 Gent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Gent, Belgium [3] Methusalem BOF09/01M00709, Ghent University, 9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Humans ; Male ; Necrosis/*enzymology ; Sirtuin 2/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-09-23
    Description: Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219413/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219413/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Douglas R -- Galluzzi, Lorenzo -- Kroemer, Guido -- R01 AI040646/AI/NIAID NIH HHS/ -- R01 AI044828/AI/NIAID NIH HHS/ -- R01 AI047891/AI/NIAID NIH HHS/ -- R01 CA169291/CA/NCI NIH HHS/ -- R01 GM096208/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1250256. doi: 10.1126/science.1250256.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. douglas.green@stjude.org kroemer@orange.fr. ; Equipe 11 labellisee par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Universite Paris Descartes/Paris V; Sorbonne Paris Cite; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. ; Equipe 11 labellisee par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Universite Paris Descartes/Paris V; Sorbonne Paris Cite; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France. Pole de Biologie, Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris, F-75015 Paris, France. douglas.green@stjude.org kroemer@orange.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237106" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/metabolism ; Acetyl Coenzyme A/metabolism ; Animals ; *Apoptosis ; *Autophagy ; *Energy Metabolism ; Humans ; *Metabolic Networks and Pathways ; Mitochondria/*metabolism ; Mitochondrial Membranes/metabolism ; Multiprotein Complexes/metabolism ; Permeability ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-21
    Description: Members of the nuclear factor-kappaB (NF-kappaB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-kappaB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-kappaB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-kappaB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-kappaB target genes, and rapidly transformed neural stem cells--the cell of origin of ependymoma--to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Matthew -- Mohankumar, Kumarasamypet M -- Punchihewa, Chandanamali -- Weinlich, Ricardo -- Dalton, James D -- Li, Yongjin -- Lee, Ryan -- Tatevossian, Ruth G -- Phoenix, Timothy N -- Thiruvenkatam, Radhika -- White, Elsie -- Tang, Bo -- Orisme, Wilda -- Gupta, Kirti -- Rusch, Michael -- Chen, Xiang -- Li, Yuxin -- Nagahawhatte, Panduka -- Hedlund, Erin -- Finkelstein, David -- Wu, Gang -- Shurtleff, Sheila -- Easton, John -- Boggs, Kristy -- Yergeau, Donald -- Vadodaria, Bhavin -- Mulder, Heather L -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Ma, Jing -- Song, Guangchun -- Gajjar, Amar -- Merchant, Thomas -- Boop, Frederick -- Smith, Amy A -- Ding, Li -- Lu, Charles -- Ochoa, Kerri -- Zhao, David -- Fulton, Robert S -- Fulton, Lucinda L -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Green, Douglas R -- Zhang, Jinghui -- Ellison, David W -- Gilbertson, Richard J -- P01 CA096832/CA/NCI NIH HHS/ -- P01CA96832/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):451-5. doi: 10.1038/nature13109. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [3]. ; 1] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2] Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA. ; Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; MD Anderson Cancer Center Orlando, Pediatric Hematology/Oncology, 92 West Miller MP 318, Orlando, Florida 32806, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [3] Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [3] Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [4] Siteman Cancer Center, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553141" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Base Sequence ; Brain Neoplasms/genetics/metabolism/pathology ; Cell Line ; Cell Nucleus/metabolism ; *Cell Transformation, Neoplastic/genetics ; Chromosomes, Human, Pair 11/genetics ; Ependymoma/*genetics/*metabolism/pathology ; Female ; Humans ; Mice ; Models, Genetic ; Molecular Sequence Data ; NF-kappa B/genetics/*metabolism ; Neural Stem Cells/metabolism/pathology ; Oncogene Proteins, Fusion/genetics/metabolism ; Phosphoproteins/genetics/metabolism ; Proteins/genetics/*metabolism ; *Signal Transduction ; Transcription Factor RelA/genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2014-05-21
    Description: Toll-like receptor signaling and subsequent activation of NF-κB– and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB–dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2014-06-06
    Print ISSN: 1350-9047
    Electronic ISSN: 1476-5403
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...