ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Surface physics, nanoscale physics, low-dimensional systems  (110)
  • Lunar and Planetary Science and Exploration  (94)
  • Mice, Inbred C57BL  (57)
  • ASTROPHYSICS
  • Life and Medical Sciences
  • 2010-2014  (261)
  • 1950-1954
  • 2013  (261)
Collection
Keywords
Years
  • 2010-2014  (261)
  • 1950-1954
Year
  • 1
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27937 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference (LPSC 2013); Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-28
    Description: A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcgammaRIIB receptor complex that activated beta-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor kappaB. MUC2 induced additional conditioning signals in intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constrains the immunogenicity of gut antigens by delivering tolerogenic signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shan, Meimei -- Gentile, Maurizio -- Yeiser, John R -- Walland, A Cooper -- Bornstein, Victor U -- Chen, Kang -- He, Bing -- Cassis, Linda -- Bigas, Anna -- Cols, Montserrat -- Comerma, Laura -- Huang, Bihui -- Blander, J Magarian -- Xiong, Huabao -- Mayer, Lloyd -- Berin, Cecilia -- Augenlicht, Leonard H -- Velcich, Anna -- Cerutti, Andrea -- AI073899/AI/NIAID NIH HHS/ -- AI095245/AI/NIAID NIH HHS/ -- AI57653/AI/NIAID NIH HHS/ -- AI61093/AI/NIAID NIH HHS/ -- AI74378/AI/NIAID NIH HHS/ -- AI95613/AI/NIAID NIH HHS/ -- AI96187/AI/NIAID NIH HHS/ -- DK072201/DK/NIDDK NIH HHS/ -- P01 AI061093/AI/NIAID NIH HHS/ -- P01 DK072201/DK/NIDDK NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 AI057653/AI/NIAID NIH HHS/ -- R01 AI093577/AI/NIAID NIH HHS/ -- U01 AI095613/AI/NIAID NIH HHS/ -- U19 AI096187/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):447-53. doi: 10.1126/science.1237910. Epub 2013 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendritic Cells/immunology ; Galectin 3/genetics/metabolism ; Glycosylation ; *Homeostasis ; Humans ; Immune Tolerance/genetics/*immunology ; Inflammation/immunology ; Intestinal Mucosa/immunology ; Intestine, Small/*immunology ; Lectins, C-Type/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mouth/*immunology ; Mucin-2/genetics/physiology ; Mucus/*immunology ; NF-kappa B/metabolism ; Receptors, IgG/genetics/metabolism ; Transcription, Genetic ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-12
    Description: Author(s): L. Giovanelli, F. C. Bocquet, P. Amsalem, H.-L. Lee, M. Abel, S. Clair, M. Koudia, T. Faury, L. Petaccia, D. Topwal, E. Salomon, T. Angot, A. A. Cafolla, N. Koch, L. Porte, A. Goldoni, and J.-M. Themlin Adsorption of organic molecules on well-oriented single-crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultraviolet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine metal can be assigned as “interface states” having so... [Phys. Rev. B 87, 035413] Published Fri Jan 11, 2013
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27938 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; TheWoodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-15
    Description: To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoggatt, Jonathan -- Mohammad, Khalid S -- Singh, Pratibha -- Hoggatt, Amber F -- Chitteti, Brahmananda R -- Speth, Jennifer M -- Hu, Peirong -- Poteat, Bradley A -- Stilger, Kayla N -- Ferraro, Francesca -- Silberstein, Lev -- Wong, Frankie K -- Farag, Sherif S -- Czader, Magdalena -- Milne, Ginger L -- Breyer, Richard M -- Serezani, Carlos H -- Scadden, David T -- Guise, Theresa A -- Srour, Edward F -- Pelus, Louis M -- CA069158/CA/NCI NIH HHS/ -- CA143057/CA/NCI NIH HHS/ -- DK07519/DK/NIDDK NIH HHS/ -- DK37097/DK/NIDDK NIH HHS/ -- HL07910/HL/NHLBI NIH HHS/ -- HL087735/HL/NHLBI NIH HHS/ -- HL096305/HL/NHLBI NIH HHS/ -- HL100402/HL/NHLBI NIH HHS/ -- P01 DK090948/DK/NIDDK NIH HHS/ -- P30 CA082709/CA/NCI NIH HHS/ -- R01 HL044851/HL/NHLBI NIH HHS/ -- R01 HL096305/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Mar 21;495(7441):365-9. doi: 10.1038/nature11929. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Cell Count ; Cell Movement/physiology ; Cells, Cultured ; Dinoprostone/*metabolism ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells/*cytology/drug effects ; Heterocyclic Compounds/pharmacology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Osteopontin/genetics ; Papio ; Receptors, Prostaglandin E, EP4 Subtype/genetics/metabolism ; Stem Cells/*cytology/drug effects ; Thiazines/pharmacology ; Thiazoles/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-21
    Description: The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-kappaB (NF-kappaB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-kappaB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Shan -- Zhang, Li -- Yao, Qing -- Li, Lin -- Dong, Na -- Rong, Jie -- Gao, Wenqing -- Ding, Xiaojun -- Sun, Liming -- Chen, Xing -- Chen, She -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):242-6. doi: 10.1038/nature12436. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955153" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Antigens, CD95/metabolism ; Apoptosis ; Arginine/*metabolism ; Death Domain Receptor Signaling Adaptor Proteins/metabolism ; Disease Models, Animal ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Infections/metabolism/microbiology/pathology ; Escherichia coli Proteins/*metabolism ; Fas-Associated Death Domain Protein/chemistry/metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; N-Acetylglucosaminyltransferases/*metabolism ; NF-kappa B/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/metabolism ; *Signal Transduction ; TNF Receptor-Associated Death Domain Protein/*chemistry/*metabolism ; TNF-Related Apoptosis-Inducing Ligand/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-03
    Description: There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirey, Kari Ann -- Lai, Wendy -- Scott, Alison J -- Lipsky, Michael -- Mistry, Pragnesh -- Pletneva, Lioubov M -- Karp, Christopher L -- McAlees, Jaclyn -- Gioannini, Theresa L -- Weiss, Jerrold -- Chen, Wilbur H -- Ernst, Robert K -- Rossignol, Daniel P -- Gusovsky, Fabian -- Blanco, Jorge C G -- Vogel, Stefanie N -- AI018797/AI/NIAID NIH HHS/ -- AI057575/AI/NIAID NIH HHS/ -- AI059372/AI/NIAID NIH HHS/ -- NCRR K12-RR-023250/PHS HHS/ -- R01 AI018797/AI/NIAID NIH HHS/ -- R01 AI057575/AI/NIAID NIH HHS/ -- R01 AI059372/AI/NIAID NIH HHS/ -- T32 AI007540/AI/NIAID NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):498-502. doi: 10.1038/nature12118. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636320" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Lung Injury/complications/drug therapy/pathology/prevention & control ; Animals ; Antigens, CD14/metabolism ; Antiviral Agents/*pharmacology/therapeutic use ; Cytokines/genetics/immunology ; Disaccharides/metabolism/*pharmacology/*therapeutic use ; Female ; Influenza A Virus, H1N1 Subtype/*drug effects/*pathogenicity ; Ligands ; Lymphocyte Antigen 96/metabolism ; Mice ; Mice, Inbred C57BL ; Orthomyxoviridae Infections/*drug therapy/immunology/pathology/virology ; Sugar Phosphates/metabolism/*pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Toll-Like Receptor 2/immunology/metabolism ; Toll-Like Receptor 4/*antagonists & inhibitors/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASErelated research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis- Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN8969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7818 , Lunar and Planetary Science Conference; Mar 18, 2014 - Mar 22, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...