ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (6)
  • 2010-2014  (6)
  • 1965-1969
  • 2013  (6)
Collection
Keywords
Years
  • 2010-2014  (6)
  • 1965-1969
Year
  • 1
    Publication Date: 2013-12-07
    Description: In individual cells, transcription is a random process obeying single-molecule kinetics. Often, it occurs in a bursty, intermittent manner. The frequency and size of these bursts affect the magnitude of temporal fluctuations in messenger RNA and protein content within a cell, creating variation or "noise" in gene expression. It is still unclear to what degree transcriptional kinetics are specific to each gene and determined by its promoter sequence. Alternative scenarios have been proposed, in which the kinetics of transcription are governed by cellular constraints and follow universal rules across the genome. Evidence from genome-wide noise studies and from systematic perturbations of promoter sequences suggest that both scenarios-namely gene-specific versus genome-wide regulation of transcription kinetics-may be present to different degrees in bacteria, yeast, and animal cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Alvaro -- Golding, Ido -- R01 GM082837/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1188-93. doi: 10.1126/science.1242975.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Escherichia coli/genetics/metabolism ; Eukaryota/genetics/metabolism ; *Gene Expression Regulation ; Genome ; Kinetics ; Models, Genetic ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; Single-Cell Analysis ; Stochastic Processes ; *Transcription, Genetic ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-15
    Description: The transition from jawless to jawed vertebrates (gnathostomes) resulted in the reconfiguration of the muscles and skeleton of the head, including the creation of a separate shoulder girdle with distinct neck muscles. We describe here the only known examples of preserved musculature from placoderms (extinct armored fishes), the phylogenetically most basal jawed vertebrates. Placoderms possess a regionalized muscular anatomy that differs radically from the musculature of extant sharks, which is often viewed as primitive for gnathostomes. The placoderm data suggest that neck musculature evolved together with a dermal joint between skull and shoulder girdle, not as part of a broadly flexible neck as in sharks, and that transverse abdominal muscles are an innovation of gnathostomes rather than of tetrapods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trinajstic, Kate -- Sanchez, Sophie -- Dupret, Vincent -- Tafforeau, Paul -- Long, John -- Young, Gavin -- Senden, Tim -- Boisvert, Catherine -- Power, Nicola -- Ahlberg, Per Erik -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):160-4. doi: 10.1126/science.1237275. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Western Australian Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Fishes/*anatomy & histology/classification/*genetics ; *Fossils ; Maxillofacial Development/*genetics ; Neck Muscles/*anatomy & histology ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-15
    Description: Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Isheng J -- Zarowiecki, Magdalena -- Holroyd, Nancy -- Garciarrubio, Alejandro -- Sanchez-Flores, Alejandro -- Brooks, Karen L -- Tracey, Alan -- Bobes, Raul J -- Fragoso, Gladis -- Sciutto, Edda -- Aslett, Martin -- Beasley, Helen -- Bennett, Hayley M -- Cai, Jianping -- Camicia, Federico -- Clark, Richard -- Cucher, Marcela -- De Silva, Nishadi -- Day, Tim A -- Deplazes, Peter -- Estrada, Karel -- Fernandez, Cecilia -- Holland, Peter W H -- Hou, Junling -- Hu, Songnian -- Huckvale, Thomas -- Hung, Stacy S -- Kamenetzky, Laura -- Keane, Jacqueline A -- Kiss, Ferenc -- Koziol, Uriel -- Lambert, Olivia -- Liu, Kan -- Luo, Xuenong -- Luo, Yingfeng -- Macchiaroli, Natalia -- Nichol, Sarah -- Paps, Jordi -- Parkinson, John -- Pouchkina-Stantcheva, Natasha -- Riddiford, Nick -- Rosenzvit, Mara -- Salinas, Gustavo -- Wasmuth, James D -- Zamanian, Mostafa -- Zheng, Yadong -- Taenia solium Genome Consortium -- Cai, Xuepeng -- Soberon, Xavier -- Olson, Peter D -- Laclette, Juan P -- Brehm, Klaus -- Berriman, Matthew -- 085775/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- BBG0038151/Biotechnology and Biological Sciences Research Council/United Kingdom -- MOP#84556/Canadian Institutes of Health Research/Canada -- TW008588/TW/FIC NIH HHS/ -- England -- Nature. 2013 Apr 4;496(7443):57-63. doi: 10.1038/nature12031. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485966" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animals ; Biological Evolution ; Cestoda/drug effects/*genetics/physiology ; Cestode Infections/drug therapy/metabolism ; Conserved Sequence/genetics ; Echinococcus granulosus/genetics ; Echinococcus multilocularis/drug effects/genetics/metabolism ; Genes, Helminth/genetics ; Genes, Homeobox/genetics ; Genome, Helminth/*genetics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Hymenolepis/genetics ; Metabolic Networks and Pathways/genetics ; Molecular Targeted Therapy ; Parasites/drug effects/*genetics/physiology ; Proteome/genetics ; Stem Cells/cytology/metabolism ; Taenia solium/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-19
    Description: The epigenetic regulation of imprinted genes by monoallelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and development. Imprinted genes were recently shown to be expressed in mammalian adult stem cells to support self-renewal of neural and lung stem cells; however, a role for imprinting per se in adult stem cells remains elusive. Here we show upregulation of growth-restricting imprinted genes, including in the H19-Igf2 locus, in long-term haematopoietic stem cells and their downregulation upon haematopoietic stem cell activation and proliferation. A differentially methylated region upstream of H19 (H19-DMR), serving as the imprinting control region, determines the reciprocal expression of H19 from the maternal allele and Igf2 from the paternal allele. In addition, H19 serves as a source of miR-675, which restricts Igf1r expression. We demonstrate that conditional deletion of the maternal but not the paternal H19-DMR reduces adult haematopoietic stem cell quiescence, a state required for long-term maintenance of haematopoietic stem cells, and compromises haematopoietic stem cell function. Maternal-specific H19-DMR deletion results in activation of the Igf2-Igfr1 pathway, as shown by the translocation of phosphorylated FoxO3 (an inactive form) from nucleus to cytoplasm and the release of FoxO3-mediated cell cycle arrest, thus leading to increased activation, proliferation and eventual exhaustion of haematopoietic stem cells. Mechanistically, maternal-specific H19-DMR deletion leads to Igf2 upregulation and increased translation of Igf1r, which is normally suppressed by H19-derived miR-675. Similarly, genetic inactivation of Igf1r partly rescues the H19-DMR deletion phenotype. Our work establishes a new role for this unique form of epigenetic control at the H19-Igf2 locus in maintaining adult stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896866/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896866/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatraman, Aparna -- He, Xi C -- Thorvaldsen, Joanne L -- Sugimura, Ryohichi -- Perry, John M -- Tao, Fang -- Zhao, Meng -- Christenson, Matthew K -- Sanchez, Rebeca -- Yu, Jaclyn Y -- Peng, Lai -- Haug, Jeffrey S -- Paulson, Ariel -- Li, Hua -- Zhong, Xiao-bo -- Clemens, Thomas L -- Bartolomei, Marisa S -- Li, Linheng -- GM51279/GM/NIGMS NIH HHS/ -- R01 GM087376/GM/NIGMS NIH HHS/ -- R37 GM051279/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Aug 15;500(7462):345-9. doi: 10.1038/nature12303. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863936" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology/*physiology ; Animals ; Epigenesis, Genetic/genetics ; Gene Expression Regulation, Developmental ; *Genomic Imprinting ; Insulin-Like Growth Factor II/*genetics/*metabolism ; Mice ; RNA, Long Noncoding/*genetics/*metabolism ; Receptor, IGF Type 1/genetics ; Signal Transduction ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-11
    Description: Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond historical analogues. Here we present a new index of the year when the projected mean climate of a given location moves to a state continuously outside the bounds of historical variability under alternative greenhouse gas emissions scenarios. Using 1860 to 2005 as the historical period, this index has a global mean of 2069 (+/-18 years s.d.) for near-surface air temperature under an emissions stabilization scenario and 2047 (+/-14 years s.d.) under a 'business-as-usual' scenario. Unprecedented climates will occur earliest in the tropics and among low-income countries, highlighting the vulnerability of global biodiversity and the limited governmental capacity to respond to the impacts of climate change. Our findings shed light on the urgency of mitigating greenhouse gas emissions if climates potentially harmful to biodiversity and society are to be prevented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mora, Camilo -- Frazier, Abby G -- Longman, Ryan J -- Dacks, Rachel S -- Walton, Maya M -- Tong, Eric J -- Sanchez, Joseph J -- Kaiser, Lauren R -- Stender, Yuko O -- Anderson, James M -- Ambrosino, Christine M -- Fernandez-Silva, Iria -- Giuseffi, Louise M -- Giambelluca, Thomas W -- England -- Nature. 2013 Oct 10;502(7470):183-7. doi: 10.1038/nature12540.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geography, University of Hawai'i at Manoa, Honolulu, Hawai'i 96822, USA. cmora@hawaii.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24108050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Computer Simulation ; *Global Warming ; Time
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-22
    Description: The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pierce, Stephanie E -- Ahlberg, Per E -- Hutchinson, John R -- Molnar, Julia L -- Sanchez, Sophie -- Tafforeau, Paul -- Clack, Jennifer A -- England -- Nature. 2013 Feb 14;494(7436):226-9. doi: 10.1038/nature11825. Epub 2013 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University Museum of Zoology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. spierce@rvc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334417" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Extremities/*anatomy & histology ; *Fossils ; Phylogeny ; Spine/*anatomy & histology ; Synchrotrons ; Vertebrates/*anatomy & histology ; X-Ray Microtomography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...