ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (4)
  • 550 - Earth sciences  (4)
  • E52
  • J24
  • Lunar and Planetary Science and Exploration
  • 2010-2014  (8)
  • 2012  (8)
Collection
Years
  • 2010-2014  (8)
Year
  • 1
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-19
    Description: Eighteen paroxysmal episodes occurred on Mt Etna in 2011, and provided rich material for testing automatic procedures of data processing and alert systems in the context of volcano monitoring. The 2011 episodes represent a typical picture of activity of Mt Etna: in 2000 and 2001, before the 2001 flank eruption, more than one hundred lava fountains were encountered. Other major lava fountains occurred before the flank eruptions of 2002/03 and 2008. All these fountains, which are powerful but usually short lived phenomena, originated from the South-East Crater area and caused the formation of thick ash clouds, followed by the fallout of material with severe problems for the infrastructure of the metropolitan area of Catania. We focus on the seismic background radiation – volcanic tremor – which plays a key role in the surveillance of Mt Etna. Since 2006 a multi-station alert system has been established in the INGV operative centre of Catania exploiting STA/LTA ratios. Besides, it has been demonstrated that also the spectral characteristics of the signal changes correspondingly to the type of volcanic activity. The simultaneous application of Self Organizing Maps and Fuzzy Clustering offers an efficient way to visualize signal characteristics and its development with time, allowing to identify early stages of eruptive events and automatically flag a critical status before this becomes evident in conventional monitoring techniques. Changes of tremor characteristics are related to the position of the source of the signal. The location of the sources exploits the distribution of the amplitudes across the seismic network. The locations were extremely useful for warning throughout both a flank eruption in 2008 as well as the 2011 lava fountains, during which a clear migration of tremor sources towards the eruptive centres could be noticed in advance. The location of the sources completes the picture of an imminent volcanic unrest and corroborates early warnings flagged by the changes of signal characteristics. On-line data processing requires computational efficiency, robustness of the methods and reliability of data acquisition. The amplitude based multi-station approach offers a reasonable stability as it is not sensitive to the failure of single stations. The single station approach, based on our unsupervised classification techniques, is cost-effective with respect to logistic efforts, as only one or few key stations are necessary. Both systems have proven to be robust with respect to disturbances (undesired transients like earthquakes, noise, short gaps in the continuous data flow), and false alarms were not encountered so far. Another critical aspect is the reliability of data storage and access. A hardware cluster architecture has been proposed for failover protection, including a Storage Area Network system. We outline concepts of the software architectures which allow easy data access following predefined user policies. We envisage the integration of seismic data and those originating from other scientific fields (such as volcano imagery, geochemistry, deformation, gravity, magneto-telluric), in order to facilitate cross-checking of the findings encountered from the single data streams, in particular allowing their immediate verification with respect to ground truth.
    Description: Published
    Description: 53-92
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: partially_open
    Keywords: Volcanic tremor ; Volcano monitoring ; Pattern recognition ; Self Organizing Maps ; Fuzzy clustering ; Mt. Etna ; Data storage ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Landslides along the Sciara del Fuoco flank of Stromboli volcano are generally accompanied by c1istinctive seismic signals which can be used for srudying this phenomenon. These signals are characterìzed by a spectral content with higher frequencies and a wider band than the typical explosion quakes and volcanic tremor signals which are continuously recorded at Stromboli. Furthermore their amplirude envelope usually shows a cigar-like shape. These two fearures make the detection of such signals quite easy. The detection of landslides at Stromboli has shown to be an important shortterm precursor of effusive eruptions. Before the Feb. 27th 2007 eruption, the opening of the effusive vents was preceded by few hours oI increased occurrence of landslide signals (Martini et al., 2007). Furthermore since the Sciara del Fuoco has shown significant instabilities during the 2002-2003 eruption, the automatic detection of landslide signals is an important monitoring tool for notifying variations in the stability of this flank. We propose a technique based on a Multi Layer Perceptron (MLP) neural network which has shown excellent performances. The network is composed of two layer of neurons, the hidden and the output. The hidden layer is composed of 4 neurons while the output layer is composed by a single neuron whose output value ranges between Oand 1, with values higher than a given threshold (e.g. 0.5) meaning positive detection. The continuous seismic signals are analysed using moving windows of 24 s, with an overlap of 12 s. For each of these windows the neural output is computed. The waveforms of each time window are parametrized using both their spectrogram and their amplirude envelope. The spectrogram is described using the Linear Preclictive Cocling (L'PC) technique which allows to represent the spectral content using a limited number of coefficients. The whole signal is c1ivided into 8 sub-windows of 5.12 s length, with an overlapping of 2.56 s. For each sub-window we compute 6 LPC coefficients, so each spectrogram is described by only 48 coefficients. The amplirude envelope is defined by computing the c1ifference between the maximum and minimum value over 1 s sub-windows obtaining 24 coefficients. In conclusion we use an input vector composed of 72 elements (48+24). This vector has shown to be an efficient and compact representation of the raw signal (composed of 1200 samples) (Esposito et al. 2006). The dataset used for determining the network parameters is composed of 537 signals, c1ivided in two classes: 267 landslide signals and 270 other signals (explosions and tremor). The classification of these signals has been performed by analysts. The training is carried out using subsets of 5/8 of the total dataset. The testing subsets are composed by the remaining 3/8. The network has shown a performance of about 98.7%. This value is an average over 6 random permutations of the dataset. A preliminary real-rime automatic system has already been implemented. This system performs continuous analysis of the seismic signals, publishing them on internal web pages. It allows a detection of the landslides and a comparison with the past activity on arbitrary rime intervals.
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Automatic detection ; landslides ; Stromboli ; neural network analysis ; seismic signals ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: Among the eruptive styles, the Strombolian activity is one of the more easy to study because of its repetitive behavior. For this reason large amount of data can be comfortably collected. Strombolian volcanoes are like natural laborato- ries repeating the same experiment (individual explosions) many times each day. The development of quantitative models of eruptive dynamics is driven by the comparison of experimental ob- servations and synthetic data obtained through mathemat- ical, numerical or analogue modeling. Since Strombolian activity offers a profuse amount of interesting seismic signals, during the last decades there has been growing attention on seismological techniques aimed at retrieving the conduit geometry and the eruption dynamics from the seismological recordings. One of these techniques, the source function inversion, is able to re- trieve a summary of the forces acting on the volcanic con- duit during the VLP event generation [5]. The comparison of observed source functions with synthetic ones, obtained through numerical modeling, allow us to put constraints on the proposed models. Quantitative models, able to fit seismological observa- tions, are a powerful tool for interpreting seismic record- ings and therefor the seismological monitoring of active volcanoes.
    Description: Published
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: restricted
    Keywords: Strombolian activity ; Slug flow ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Nel corso degli anni ‘90 l’uso di reti sismiche broadband in aree vulcaniche attive ha permesso di osservare in numerosi casi, segnali VLP (Very Long Period), ovvero segnali transienti con periodo dominante nella banda 2-50 s. Lo Stromboli, che con la sua persistente attività è un generatore di segnali VLP, è uno dei pochi vulcani su cui opera una rete sismica estesa costituita da stazioni broadband. A partire dal maggio 2003, è attivo presso la sede INGV Osservatorio Vesuviano un sistema automatico, denominato EOLO, per il rilevamento, la localizzazione e l’analisi in tempo reale di questi segnali. Il sistema EOLO riceve in ingresso (via internet) i segnali sismici registrati dalla rete broadband INGV dello Stromboli e fornisce, attraverso un’interfaccia web, sia i dati relativi ai singoli eventi VLP che delle statistiche giornaliere, mensili e annuali. L’interfaccia web interagisce con 3 database diversi: quello delle “forme d’onda”, il “catalogo eventi” e il database “statistiche”. Il database “forme d’onda” è costituito da un insieme di file in formato SAC, creati a partire dai segnali “grezzi” ricevuti in input. Il “catalogo eventi” rappresenta il cuore di tutto il sistema ed è implementato mediante SQL. Per ciascun evento VLP individuato, vengono determinati i parametri ipocentrali e le ampiezze alle varie stazioni e vengono inserite nel database “catalogo eventi”. Con periodicità oraria, viene aggiornato il database “statistiche”, costituito da grafici con gli andamenti orari e giornalieri del numero di eventi, della loro intensità e dell’andamento medio della polarizzazione dei segnali sismici VLP. L’interfaccia web consente di visualizzare, attraverso applet Java e script CGI, la localizzazione di ciascun evento, le forme d’onda, spettri e spettrogrammi, ed altre informazioni ritenute utili. Il sistema di rilevamento/localizzazione, che costruisce il database “catalogo eventi” è basato sull’analisi della coerenza delle forme d’onda VLP registrate alle varie stazione. Un calcolatore parallelo, basato su un cluster di 64 processori, esegue in tempo reale l’analisi della funzione semblance (indicativa della coerenza) su una griglia di dimensioni 8 km x 8 km x 2 km a spaziatura regolare 100 m x 100 m x 50 m, centrata sullo Stromboli. L’accadimento di un evento VLP produce il superamento di un valore di soglia della funzione semblance. La posizione del valore massimo della funzione semblance, durante un evento, è assunta come localizzazione. Nei prossimi mesi al sistema esistente sarà aggiunto un modulo per l’inversione della funzione sorgente dei singoli eventi VLP.
    Description: Published
    Description: Roma
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: SISTEMA DI ANALISI AUTOMATICA ; SEGNALI SISMICI VLP ; Stromboli ; cluster ; calcolo parallelo ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: This paper evaluates the potential use of reflected signals from Global Navigation Satellite Systems as a source of opportunity for the retrieval of absolute ellipsoidal heights over sea ice. Accurate estimation of the surface level would be helpful for the determination of the ice thickness, a key parameter for classification and characterization of sea ice masses. Our analysis is based on altimetric estimations from the coherent differential phase between direct and both cross- and co-polar reflected signals. For this purpose, GPS waveforms have been collected from a fixed platform in Greenland, monitoring the complete process of sea ice formation and melting during a 7-month period. The variability of coherent phase samples and polarimetric measurements are compared with in situ observations to make a realistic rough characterization of the ice cover. The retrieved sea ice surface height estimates are then evaluated against an Arctic tide model, ice surface temperature from moderate-resolution imaging spectroradiometer, and the laser altimetry product from ICESat.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: Within Europe there are more than 380 Ocean Bottom Seismometers (OBS) distributed across 10 instrument parks in 6 countries. At least 120 of these OBS are wideband or broadband, over 260 can be deployed for at least 6 months at a time and 140 for at least one year. New parks are planned in two other European countries, which should add over 70 OBSs to this “fleet”. However, these parks are under the control of individual countries or universities and hence to date this has made it difficult to organize large-scale experiments, especially for seismologists without marine experience. There has recently been an initiative to coordinate the use of these distributed instruments and their data products, to encourage large-scale experiments, possibly with onshore and offshore components, by seismologists who have not necessarily used OBSs before. The ongoing or planned developments include: Helping scientists with marine-specific formalities such as ship requests; clearer explanations of the noise floors of OBS instrumentation; improved clarity of instrument pricing and availability; standardized data output formats and data validation; and archiving in established seismological data centers. These efforts should allow improved experiment design in scientifically interesting regions with an offshore component and an easier, clearer way to organize large-scale, multi-country experiments. We will present details of this initiative to help organize large-scale experiments, the particularities of OBS sensors and marine deployments, the available instrumentation and new developments.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...