ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-30
    Description: Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Floudas, Dimitrios -- Binder, Manfred -- Riley, Robert -- Barry, Kerrie -- Blanchette, Robert A -- Henrissat, Bernard -- Martinez, Angel T -- Otillar, Robert -- Spatafora, Joseph W -- Yadav, Jagjit S -- Aerts, Andrea -- Benoit, Isabelle -- Boyd, Alex -- Carlson, Alexis -- Copeland, Alex -- Coutinho, Pedro M -- de Vries, Ronald P -- Ferreira, Patricia -- Findley, Keisha -- Foster, Brian -- Gaskell, Jill -- Glotzer, Dylan -- Gorecki, Pawel -- Heitman, Joseph -- Hesse, Cedar -- Hori, Chiaki -- Igarashi, Kiyohiko -- Jurgens, Joel A -- Kallen, Nathan -- Kersten, Phil -- Kohler, Annegret -- Kues, Ursula -- Kumar, T K Arun -- Kuo, Alan -- LaButti, Kurt -- Larrondo, Luis F -- Lindquist, Erika -- Ling, Albee -- Lombard, Vincent -- Lucas, Susan -- Lundell, Taina -- Martin, Rachael -- McLaughlin, David J -- Morgenstern, Ingo -- Morin, Emanuelle -- Murat, Claude -- Nagy, Laszlo G -- Nolan, Matt -- Ohm, Robin A -- Patyshakuliyeva, Aleksandrina -- Rokas, Antonis -- Ruiz-Duenas, Francisco J -- Sabat, Grzegorz -- Salamov, Asaf -- Samejima, Masahiro -- Schmutz, Jeremy -- Slot, Jason C -- St John, Franz -- Stenlid, Jan -- Sun, Hui -- Sun, Sheng -- Syed, Khajamohiddin -- Tsang, Adrian -- Wiebenga, Ad -- Young, Darcy -- Pisabarro, Antonio -- Eastwood, Daniel C -- Martin, Francis -- Cullen, Dan -- Grigoriev, Igor V -- Hibbett, David S -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1715-9. doi: 10.1126/science.1221748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Clark University, Worcester, MA 01610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745431" target="_blank"〉PubMed〈/a〉
    Keywords: Basidiomycota/classification/*enzymology/*genetics ; Bayes Theorem ; *Evolution, Molecular ; *Genome, Fungal ; Indoles ; Lignin/*metabolism ; Peroxidases/*genetics/metabolism ; Wood/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-09
    Description: Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scally, Aylwyn -- Dutheil, Julien Y -- Hillier, LaDeana W -- Jordan, Gregory E -- Goodhead, Ian -- Herrero, Javier -- Hobolth, Asger -- Lappalainen, Tuuli -- Mailund, Thomas -- Marques-Bonet, Tomas -- McCarthy, Shane -- Montgomery, Stephen H -- Schwalie, Petra C -- Tang, Y Amy -- Ward, Michelle C -- Xue, Yali -- Yngvadottir, Bryndis -- Alkan, Can -- Andersen, Lars N -- Ayub, Qasim -- Ball, Edward V -- Beal, Kathryn -- Bradley, Brenda J -- Chen, Yuan -- Clee, Chris M -- Fitzgerald, Stephen -- Graves, Tina A -- Gu, Yong -- Heath, Paul -- Heger, Andreas -- Karakoc, Emre -- Kolb-Kokocinski, Anja -- Laird, Gavin K -- Lunter, Gerton -- Meader, Stephen -- Mort, Matthew -- Mullikin, James C -- Munch, Kasper -- O'Connor, Timothy D -- Phillips, Andrew D -- Prado-Martinez, Javier -- Rogers, Anthony S -- Sajjadian, Saba -- Schmidt, Dominic -- Shaw, Katy -- Simpson, Jared T -- Stenson, Peter D -- Turner, Daniel J -- Vigilant, Linda -- Vilella, Albert J -- Whitener, Weldon -- Zhu, Baoli -- Cooper, David N -- de Jong, Pieter -- Dermitzakis, Emmanouil T -- Eichler, Evan E -- Flicek, Paul -- Goldman, Nick -- Mundy, Nicholas I -- Ning, Zemin -- Odom, Duncan T -- Ponting, Chris P -- Quail, Michael A -- Ryder, Oliver A -- Searle, Stephen M -- Warren, Wesley C -- Wilson, Richard K -- Schierup, Mikkel H -- Rogers, Jane -- Tyler-Smith, Chris -- Durbin, Richard -- 062023/Wellcome Trust/United Kingdom -- 075491/Z/04/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 077198/Wellcome Trust/United Kingdom -- 089066/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 095908/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 202218/European Research Council/International -- A15603/Cancer Research UK/United Kingdom -- G0501331/Medical Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- HG002385/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- WT062023/Wellcome Trust/United Kingdom -- WT077009/Wellcome Trust/United Kingdom -- WT077192/Wellcome Trust/United Kingdom -- WT077198/Wellcome Trust/United Kingdom -- WT089066/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Mar 7;483(7388):169-75. doi: 10.1038/nature10842.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Female ; Gene Expression Regulation ; *Genetic Speciation ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Gorilla gorilla/*genetics ; Humans ; Macaca mulatta/genetics ; Molecular Sequence Data ; Pan troglodytes/genetics ; Phylogeny ; Pongo/genetics ; Proteins/genetics ; Sequence Alignment ; Species Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. Hypovolemia, reduced plasma volume, is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore lost plasma volume by giving crew salt tablets and water prior to re-entry. The main purpose of the proposed study is to define the temporal profile of cardiac responses to simulated 0-G conditions before and following a fluid loading countermeasure. 8 men and 8 women will be tested during 4 hour exposures at 6o head down tilt (HDT). Each subject will be given two exposures to HDT on separate days, one with and one without fluid loading (one liter of 0.9% saline solution). Stand tests (orthostatic stress) will be done before and after each HDT. Cardiac measures will be obtained with both impedance cardiography and echo ultrasound
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN4803 , NASA Human Research Program Investigators Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In space, astronauts may experience effects of cumulative sleep loss due to demanding work schedules that can result in cognitive performance impairments, mood state deteriorations, and sleep-wake cycle disruption. Individuals who experience sleep deprivation of six hours beyond normal sleep times experience detrimental changes in their mood and performance states. Hence, the potential for life threatening errors increases exponentially with sleep deprivation. We explored the effects of 36-hours of sleep deprivation on cognitive performance, mood states, and physiological responses to identify which metrics may best predict fatigue induced performance decrements of individuals.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN6015 , SACNAS National Conference 2012; Oct 11, 2012 - Oct 14, 2012; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...