ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (24)
  • 2015-2019
  • 2010-2014  (24)
  • 2010  (24)
Collection
Publisher
Years
  • 2015-2019
  • 2010-2014  (24)
Year
  • 1
    Publication Date: 2010-12-06
    Description: The ash cloud of the Eyjafjallajökull1 volcano on Iceland caused closure of large parts of European airspace in April and May 2010. For the validation and improvement of the European volcanic ash forecast models several research flights were performed. Also the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) flying laboratory, which routinely measures at cruise altitude (≈11 km) performed three dedicated measurements flights through sections of the ash plume. Although the focus of these flights was on the detection and quantification of the volcanic ash, we report here on sulphur dioxide (SO2) and bromine monoxide (BrO) measurements with the CARIBIC DOAS (Differential Optical Absorption Spectroscopy) instrument during the second of these special flights on 16 May 2010. As the BrO and the SO2 observations coincide, we assume the BrO to have been formed inside the volcanic plume. Both SO2 and BrO observations agree well with simultaneous satellite (GOME-2) observations. SO2 column densities retrieved from satellite observations are often used as an indicator for volcanic ash. For SO2 some additional information on the local distribution can be derived from a~comparison of forward and back scan GOME-2 data. More details on the local plume size and position are retrieved by combining CARIBIC and GOME-2 data. 1Also referred to as: Eyjafjalla (e.g. Schumann et al., 2010), Eyjafjöll or Eyjafjoll (e.g. Ansmann et al., 2010).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-18
    Description: The UV Aerosol Indices (UVAI) form one of very few available tools in satellite remote sensing that provide information on aerosol absorption. The UVAI are also quite insensitive to surface type and are determined in the presence of clouds – situations where most aerosol retrieval algorithms do not work. The UVAI are most sensitive to elevated layers of absorbing aerosols, such as mineral dust and smoke from biomass burning, but they can also be used to study non-absorbing aerosols, such as sulphate and secondary organic aerosols. Although UVAI are determined for cloud-contaminated pixels, clouds do affect the value of UVAI in several ways. One way to correct for these effects is to remove clouded pixels using a cloud filter. However, this causes a large loss of data, biases the results towards clear skies, and removes all potentially very interesting pixels where aerosols and clouds co-exist. We here propose to correct the effects of clouds on UVAI in a more sophisticated way, namely by simulating the contribution of clouds to UVAI, and then subtracting it from the measured data. To this aim, we modelled UVAI from clouds by using measured cloud optical parameters – either with low spatial resolution from SCIAMACHY, or high resolution from MERIS – as input. The modelled UVAI were compared with UVAI measured by SCIAMACHY on different spatial (local, regional and global) and temporal scales (single measurement, daily means and seasonal means). The general dependencies of UVAI on cloud parameters were quite well reproduced, but several issues remain unclear: compared to the modelled UVAI, measured UVAI show a bias, in particular for large cloud fractions, and much larger scatter. Also, the viewing angle dependence differs for measured and modelled UVAI. The modelled UVAI from clouds will be used to correct measured UVAI for the effect of clouds, thus allowing a more quantitative analysis of UVAI and enabling investigations of aerosol-cloud interactions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-11
    Description: Limb measurements provided by the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on the ENVISAT satellite allow retrieving stratospheric profiles of various trace gases on a global scale. Combining measurements of the same air volume from different viewing positions along the orbit, a tomographic approach can be applied and 2-D distribution fields of stratospheric trace gases can be acquired in one inversion. With this approach, it is possible to improve the accounting for the effect of horizontal gradients in the trace gas distribution on the profile retrieval. This was shown in a previous study for the retrieval of NO2 and OClO profiles in the Arctic region near the polar vortex boundary. In this study, the tomographic retrieval is applied on measurements during special limb-only orbits performed on 14 December 2008. For these orbits the distance between consecutive limb scanning sequences was reduced to ~3.3° of the orbital circle (i.e. more than two times with respect to the nominal operational mode). Thus, the same air volumes are scanned successively by more than one scanning sequence also for midlatitudes and the tropics. It is found that the profiles obtained by the tomographic 2-D approach show significant differences to those obtained by the 1-D approach. In particular, for regions close to stratospheric transport barriers (i.e. near to the edge of the polar vortex and subtropical transport barrier) up to 50% larger or smaller NO2 number densities (depending on the sign of the gradient along the line of sight) for altitudes below the peak of the profile (around 20 km) are obtained. The limb-only measurements allow examining the systematic error if the horizontal gradient is not accounted for, and studying the impact of the gradient strength on the profile retrieval on a global scale. The findings for the actual SCIAMACHY observations are verified by sensitivity studies for simulated data for which the NO2 distributions to be retrieved are known in advance. In addition, the impact of the horizontal distance between consecutive limb scanning sequences on the quality of the tomographic 2-D retrieval is investigated and a possibility to take into account the horizontal gradients by an interpolation approach is studied.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-24
    Description: Lightning is an important source of NOx in the free troposphere, especially in the tropics, with strong impact on ozone production. However, estimates of lightning NOx (LNOx) production efficiency (LNOx per flash) are still quite uncertain. In this study we present a systematic analysis of NO2 column densities from SCIAMACHY measurements over active thunderstorms, as detected by the World-Wide Lightning Location Network (WWLLN), where the WWLLN detection efficiency was estimated using the flash climatology of the satellite lightning sensors LIS/OTD. Only events with high lightning activity are considered, where corrected WWLLN flash rate densities inside the satellite pixel within the last hour are above 1 /km2/h. For typical SCIAMACHY ground pixels of 30 × 60 km2, this threshold corresponds to 1800 flashes over the last hour, which, for literature estimates of lightning NOx production, should result in clearly enhanced NO2 column densities. From 2004–2008, we find 287 coincidences of SCIAMACHY measurements and high WWLLN flash rate densities. For some of these events, a clear enhancement of column densities of NO2 could be observed, indeed. But overall, the measured column densities are below the expected values by more than one order of magnitude, and in most of the cases, no enhanced NO2 could be found at all. Our results are in contradiction to the currently accepted range of LNOx production per flash of 15 (2–40)×1025 molec/flash. This probably partly results from the specific conditions for the events under investigation, i.e. events of high lightning activity in the morning (local time) and mostly (for 162 out of 287 events) over ocean. Within the detected coincidences, the highest NO2 column densities were observed around the US Eastcoast. This might be partly due to interference with ground sources of NOx being uplifted by the convective systems. However, it could also indicate that flashes in this region are particularly productive. We conclude that current estimates of LNOx production might be biased high for two reasons. First, we observe a high variability of NO2 for coincident lightning events. This high variability can easily cause a publication bias, since studies reporting on high NOx production have likely been published, while studies finding no or low amounts of NOx might have been rejected as errorneous or not significant. Second, many estimates of LNOx production in literature have been performed over the US, which is probably not representative for global lightning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-21
    Description: The 2008 Kasatochi volcanic eruption emitted ≈1.5–2.5 Tg SO2 into the upper troposphere and lower stratosphere. Parts of the main volcanic plume (gases and particles) reached central Europe a week after the eruption and were detected there by the CARIBIC (Civil Aircraft for Regular investigation of the Atmosphere based on an Instrument Container) flying observatory. The plume was also observed by the GOME-2 satellite instrument, only a few hours after the CARIBIC aircraft had crossed the plume, thus giving a unique opportunity to compare results. Trajectories and local wind speeds are investigated in detail using the GOME-2 and CARIBIC observations for better comparison of the results from these two observational systems. A comparison of the satellite spatial pattern with the local observations of the wind speed and the trajectory model TRAJKS showed a slight discrepancy, which has to be considered for satellite validation. Hence, it appears that detailed analyses of wind speeds are required. Emitted and secondary particles, partly measured and sampled by the CARIBIC in situ instruments, affected the DOAS SO2 measurements, of both CARIBIC and GOME-2. Overall GOME-2 and the CARIBIC SO2 measurements agree very well. The major uncertainties remain the actual wind speed needed to properly correct for the advection of the plume between the different overpass times and effects of aerosols on DOAS retrievals. The good agreement can be seen as validation for both GOME-2 and CARIBIC DOAS observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-03-01
    Description: We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument sampling at 7 different elevation angles between 3° and 90°. During 9 cloud-free days, differential slant column densities (DSCDs) of O4 (O2 dimer) absorptions between 351 nm and 389 nm were evaluated for 6 elevation angles. Here, we show that radiative transfer modeling of the DSCDS can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison of the aerosol extinction with simultaneously recorded, ground based nephelometer data shows excellent agreement.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-12
    Description: The 2008 Kasatochi volcanic eruption emitted ≈1.5–2.5 Tg SO2 into the upper troposphere and lower stratosphere. Parts of the main volcanic plume (gases and particles) reached central Europe a week after the eruption and were detected there by the CARIBIC (Civil Aircraft for Regular investigation of the Atmosphere based on an Instrument Container) flying observatory. The plume was also observed by the GOME-2 satellite instrument, only a few hours after the CARIBIC aircraft had crossed the plume, thus giving a unique opportunity to compare results. Trajectories and local wind speeds are investigated in detail using the GOME-2 and CARIBIC observations for better comparison of the results from these two observational systems. A comparison of the spatial pattern with the local observations of the wind speed and the trajectory model TRAJKS showed a slight discrepancy, which has to be considered for satellite validation. Hence, it appears that detailed analyses of wind speeds are required. Emitted and secondary particles, partly measured and sampled by the CARIBIC in situ instruments, affected the DOAS SO2 measurements, of both CARIBIC and GOME-2. Overall GOME-2 and the CARIBIC SO2 measurements agree very well. The major uncertainties remain the actual wind speed needed to properly correct for the advection of the plume between the different overpass times, and to smaller degree the effect of aerosol. The good agreement can be seen as validation for both GOME-2 and CARIBIC DOAS observations and is also a basis for future common projects.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-08-13
    Description: In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-11-18
    Description: This study presents two scientific and one operational retrieval algorithms used to obtain vertical distributions of bromine monoxide (BrO) from observations of the scattered solar light performed by the SCIAMACHY instrument in limb viewing geometry. The study begins with a discussion of the theoretical basis of all algorithms followed by an investigation of the retrieval sensitivity. Simulations with three different radiative transfer models allow us to analyze influence of the forward model implementation upon the retrieval results. By means of synthetic retrievals we analyze major sources of uncertainties in the resulting BrO profiles such as different BrO cross sections, their temperature dependence, and stratospheric aerosols. Finally, the reliability of SCIAMACHY BrO profile retrievals is demonstrated comparing results from different algorithms to balloon-borne observations.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-08-19
    Description: In this study we explore the potential of satellite observations of the Ring effect (at various wavelengths) for the retrieval of atmospheric aerosol properties. Compared to clouds, aerosols have a rather weak influence on the Ring effect, thus the requirements on the accuracy of the measurements and the radiative transfer simulations are high. In this study, we show that for moderate and high aerosol optical depth (AOD), Ring effect observations are sensitive enough to yield information not only on the AOD, but also on the absorbing properties of aerosols and the aerosol layer height. The latter two quantities are especially important for the determination of the radiative effects of aerosols. Our investigations are based on observations by the satellite instrument SCIAMACHY on ENVISAT (2004–2008) and on model simulations using the Monte-Carlo radiative transfer model McArtim. In addition to the Ring effect we investigate the impact of aerosols on the absorptions of the oxygen molecule (O2) and dimer (O4) as well as the radiance. In general good consistency between measured and simulated quantities is found. In some cases also systematic differences occurred, which are probably mainly related to the strong polarisation sensitivity of the SCIAMACHY instrument. Our study indicates that Ring effect observations have important advantages for aerosol retrievals: in contrast to O2 and O4 absorptions they are only weakly affected by the surface albedo; they can be analysed with high accuracy in various wavelength ranges; and depending on the wavelength range, they show different sensitivities on aerosol properties like single scattering albedo, optical depth or layer height. The results of this study are of particular interest for future satellite instruments with reduced polarisation sensitivity and smaller ground pixels, capable of measuring the Ring effect with higher accuracy.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...