ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Numerical modeling  (5)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (4)
  • American Geophysical Union  (9)
  • American Meteorological Society
  • 2010-2014  (9)
  • 1955-1959
  • 2014  (1)
  • 2010  (8)
  • 1
    Publication Date: 2017-04-04
    Description: We (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an in-homogeneous dataset made up of tide-gages, satellite altimetry, and far-field GPS recordings. The purpose is two-fold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, rupture velocity); (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data, so to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 meters in the Southern part of the source. The rake direction rotates counter-clockwise at North, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistently with the expected increase of rigidity with depth. It is also lower in the Northern part, consistently with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20-30 GPa), that is lower than PREM average for the seismogenic volume [Dziewonski and Anderson, 1981]. The source rigidity is one of the factors controlling the tsunamigenesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation.
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Source process ; Sumatra ; Tsunami ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: An eleven‐month deployment of 25 ocean bottom seismometers provides an unprecedented opportunity to study low‐magnitude local earthquakes in the complex transpressive plate boundary setting of the Gulf of Cadiz, known for the 1755 Lisbon earthquake and tsunami. 36 relocated earthquakes (ML 2.2 to 4.8) concentrate at 40– 60 km depth, near the base of the seismogenic layer in ∼140 Ma old oceanic mantle lithosphere, and roughly align along two perpendicular, NNE‐SSW and WNWESE striking structures. First motion focal mechanisms indicate compressive stress for the cluster close to the northern Horseshoe fault termination which trends perpendicular to plate convergence. Focal mechanisms for the second cluster near the southern termination of the Horseshoe fault indicate a strike‐slip regime, providing evidence for present‐day activity of a dextral shear zone proposed to represent the Eurasia‐Africa plate contact. We hypothesize that regional tectonics is characterized by slip partitioning.
    Description: Published
    Description: L18309
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: oceanic lithospheric mantle ; focal mechanisms ; stress tensor inversion ; Gulf of Cadiz ; ocean bottom seismometer ; 1755 Lisbon earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Tectonic tremor has been recorded at many subduction zones, including the Nankai, Cascadia, Mexican, and Alaskan subduction zones. This study, the first to use small aperture seismic arrays to track tremor, deployed three small aperture seismic arrays along the Cascadia subduction zone during a tremor and slow slip episode in July 2004. The tremor was active during virtually all (up to 99%) minutes of the analyzed tremor episode using 5 min sample windows. Individual wave phases were tracked across the arrays and used to derive slowness vectors. These were compared with slowness vectors computed from a standard layered Earth model to derive tremor locations. Locations were stable within a volume roughly 250 km2 in epicenter and 20 km in depth for hours to days before moving to a new volume. The migration between volumes was not smooth, and the movement of the sources within the volume followed no specific pattern. Overall migration speeds along the strike of the subduction zone were between 5 and 15 km/d; smaller scale migration speeds between volumes reached speeds up to 2 km/min. Uncertainties in the best locations were 5 km in epicenter and 10 km in depth. For this data set and processing methodology, tremor does not locate predominately on the primary subduction interface. Our favored model for the generation of tectonic tremor signals is that the tremor is triggered by stress and fluid pressure changes caused by slow slip and is composed, at least in part, of low‐frequency earthquakes broadly distributed in location
    Description: Published
    Description: B00A24
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: tremor migration ; Cascadia 2004 ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.
    Description: We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.).
    Keywords: Mid-ocean ridges ; Faulting ; Magmatism ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB3007, doi:10.1029/2006GB002857.
    Description: Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
    Description: R. G. N. and J. L. S. acknowledge the support of NASA grants NAG5-6451 and NAG5-6591, respectively, as part of the JGOFS Synthesis and Modeling Program. G. K. P. and F. J. acknowledge support by the Swiss National Science Foundation. European contributions were supported by the EU GOSAC Project (ENV4-CT97- 0495).
    Keywords: Export production ; Numerical modeling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S15, doi:10.1029/2006JC003728.
    Description: The summer circulations and hydrographic fields of the Kara Sea are reconstructed for mean, positive and negative Arctic Oscillation regimes employing a variational data assimilation technique which provides the best fit of reconstructed fields to climatological data and satisfies dynamical and kinematic constraints of a quasi-stationary primitive equation ocean circulation model. The reconstructed circulations agree well with the measurements and are characterized by inflow of 0.63, 0.8, 0.51 Sv through Kara Gate and 1.18, 1.1, 1.12 Sv between Novaya Zemlya and Franz Josef Land, for mean climatologic conditions, positive and negative AO indexes, respectively. The major regions of water outflow for these regimes are the St. Anna Trough (1.17, 1.21, 1.34 Sv) and Vilkitsky/Shokalsky Straits (0.52, 0.7, 0.51 Sv). The optimized velocity pattern for the mean climatological summer reveals a strong anticyclonic circulation in the central part of the Kara Sea (Region of Fresh Water Inflow, ROFI zone) and is confirmed by ADCP surveys and laboratory modeling. This circulation is well pronounced for both high and low AO phases, but in the positive AO phase it is shifted approximately 200 km west relatively to its climatological center. During the negative AO phase the ROFI locaion is close to its climatological position. The results of the variational data assimilation approach were compared with the simulated data from the Hamburg Shelf Ocean Model (HAMSOM) and Naval Postgraduate School 18 km resolution (NPS-18) model to validate these models.
    Description: This research is supported by the Frontier Research System for Global Change, through JAMSTEC, Japan, and by the National Science Foundation Office of Polar Programs (under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks). The development of the data assimilation system, utilized in this study, was also supported by NSF grant OCE-0118200.
    Keywords: Kara Sea ; Variational approach ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): F01006, doi:10.1029/2007JF000885.
    Keywords: Coastline evolution ; Morphodynamic instabilities ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): F04011, doi:10.1029/2005JF000422.
    Description: Contrary to traditional findings, the deepwater angle of wave approach strongly affects plan view coastal evolution, giving rise to an antidiffusional “high wave angle” instability for sufficiently oblique deepwater waves (with angles between wave crests and the shoreline trend larger than the value that maximizes alongshore sediment transport, ∼45°). A one-contour-line numerical model shows that a predominance of high-angle waves can cause a shoreline to self-organize into regular, quasiperiodic shapes similar to those found along many natural coasts at scales ranging from kilometers to hundreds of kilometers. The numerical model has been updated from a previous version to include a formulation for the widening of an overly thin barrier by the process of barrier overwash, which is assumed to maintain a minimum barrier width. Systematic analysis shows that the wave climate determines the form of coastal response. For nearly symmetric wave climates (small net alongshore sediment transport), cuspate coasts develop that exhibit increasing relative cross-shore amplitude and pointier tips as the proportion of high-angle waves is increased. For asymmetrical wave climates, shoreline features migrate in the downdrift direction, either as subtle alongshore sand waves or as offshore-extending “flying spits,” depending on the proportion of high-angle waves. Numerical analyses further show that the rate that the alongshore scale of model features increases through merging follows a diffusional temporal scale over several orders of magnitude, a rate that is insensitive to the proportion of high-angle waves. The proportion of high-angle waves determines the offshore versus alongshore aspect ratio of self-organized shoreline undulations.
    Description: This research was funded by the Andrew W. Mellon Foundation and NSF grants DEB-05-07987 and EAR-04-44792.
    Keywords: Coastline evolution ; Morphodynamic instabilities ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/avi
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...