ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (7)
  • Spacecraft Design, Testing and Performance  (6)
  • 2005-2009  (13)
  • 1990-1994
  • 1955-1959
  • 2009  (5)
  • 2007  (8)
Collection
Years
  • 2005-2009  (13)
  • 1990-1994
  • 1955-1959
Year
  • 1
    Publication Date: 2018-06-12
    Description: We used Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20min prior to its fast eruption and strong soft X-ray (SXR) flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, an SXR sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG Stokes-V magnetograms show that the pre-emption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measured the canceling network fields to be approx. 40 G, and we estimated that approx. 10(exp 19)Mx of flux canceled during the five hours prior to eruption; this is only approx.5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field's eruption.
    Keywords: Astronomy
    Type: Publications of the Astronomical Society of Japan; Volume 59; S823-S829
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Images and the radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton are presented along with a detailed discussion of the data reduction and analysis methods, including background modeling, which were used in the processing. Proper consideration of the various background components is vital to extend the reliable determination of cluster parameters to the largest possible cluster radii. The various components of the background including the quiescent particle background, cosmic diffuse emission, soft proton contamination, and solar wind charge exchange emission are discussed along with suggested means of their identification, filtering, and/or their modeling and subtraction. Every component is spectrally variable, sometimes significantly so, and all components except the cosmic background are temporally variable as well. The distributions of the events over the FOV vary between the components, and some distributions vary with energy. The scientific results from observations of low surface brightness objects and the diffuse background itself can be strongly affected by these background components and therefore great care should be taken in their consideration.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation gives a general overview of the X-43A program. The contents include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; and 5) Flight 3 and Results.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Description: The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-12
    Description: We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20 min prior to its fast eruption and strong soft X-ray flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, a soft X-ray (SXR) sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG/V magnetograms show that the pre-eruption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measure the canceling network fields to be approx. 40 G, and we estimate that approx. 10(exp 19) Mx of flux canceled during the five hours prior to eruption; this is only approx. 5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field's eruption.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society; Jan 04, 2009 - Jan 09, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 54th Joint JANNAF Propulsion Meeting; May 14, 2007 - May 17, 2007; Denver, Co; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In the past, the orbital debris environment was modeled as consisting entirely of aluminum particles. As a consequence, most of the impact test database on spacecraft micro-meteoroid and orbital debris (MMOD) shields, and the resulting ballistic limit equations used to predict shielding performance, has been based on using aluminum projectiles. Recently, data has been collected from returned spacecraft materials and other sources that indicate higher and lower density components of orbital debris also exist. New orbital debris environment models such as ORDEM2008 provide predictions of the fraction of orbital debris in various density bins (high = 7.9 g/cu cm, medium = 2.8 g/cu cm, and low = 0.9-1.1 g/cu cm). This paper describes impact tests to assess the effects of projectile density on the performance capabilities of typical MMOD shields. Updates to shield ballistic limit equations are provided based on results of tests and analysis.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-18674 , 11th Hypervelocity Impact Symposium; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Whipple shields were first proposed as a means of protecting spacecraft from the impact of micrometeoroids in 1947 [1] and are currently in use as micrometeoroid and orbital debris shields on modern spacecraft. In the intervening years, the function of the thin bumper used to shatter or melt threatening particles has been augmented and enhanced by the use of various types and configurations of intermediate layers of various materials. All shield designs serve to minimize the threat of a spall failure or perforation of the main wall of the spacecraft as a result of the impact of the fragments. With increasing use of Whipple shields, various ballistic limit equations (BLEs) for guiding the design and estimating the performance of shield systems have been developed. Perhaps the best known and most used are the "new" modified Cour-Palais (Christiansen) equations [2]. These equations address the three phases of impact: (1) ballistic (〈3 km/s), where the projectile is moving too slowly to fragment and essentially penetrates as an intact projectile; (2) shatter (3 to 7 km/s), where the projectile fragments at impact and forms an expanding cloud of debris fragments; and (3) melt/vaporization (〉7 km/s), where the projectile melts or vaporizes at impact. The performance of Whipple shields and the adequacy of the BLEs have been examined for the first two phases using the results of impact tests obtained from two-stage, light-gas gun test firings. Shield performance and the adequacy of the BLEs has not been evaluated in the melt/vaporization phase until now because of the limitations of launchers used to accelerate projectiles with controlled properties to velocities above 7.5 km/s. A three-stage, light-gas gun, developed at the University of Dayton Research Institute (UDRI) [3], is capable of launching small, aluminum spheres to velocities above 9 km/s. This launcher was used to evaluate the ballistic performance of two Whipple shield systems, various thermal protection system materials, and other spacecraft-related materials to the impact of 1.6-mm- to 2.6-mm-diameter, 2017-T4 aluminum spheres at impact velocities ranging from 8.91 km/s to 9.28 km/s. Test results, details of the shield systems, and nominal ballistic limits for the two Whipple shields are shown in Figures 1 and 2.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-18485 , Hypervelocity Impact Symposium 2010; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...