ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Structure, Tertiary  (20)
  • American Association for the Advancement of Science (AAAS)  (20)
  • 2005-2009  (20)
  • 2006  (20)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (20)
Years
  • 2005-2009  (20)
Year
  • 1
    Publication Date: 2006-09-16
    Description: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuskan, G A -- Difazio, S -- Jansson, S -- Bohlmann, J -- Grigoriev, I -- Hellsten, U -- Putnam, N -- Ralph, S -- Rombauts, S -- Salamov, A -- Schein, J -- Sterck, L -- Aerts, A -- Bhalerao, R R -- Bhalerao, R P -- Blaudez, D -- Boerjan, W -- Brun, A -- Brunner, A -- Busov, V -- Campbell, M -- Carlson, J -- Chalot, M -- Chapman, J -- Chen, G-L -- Cooper, D -- Coutinho, P M -- Couturier, J -- Covert, S -- Cronk, Q -- Cunningham, R -- Davis, J -- Degroeve, S -- Dejardin, A -- Depamphilis, C -- Detter, J -- Dirks, B -- Dubchak, I -- Duplessis, S -- Ehlting, J -- Ellis, B -- Gendler, K -- Goodstein, D -- Gribskov, M -- Grimwood, J -- Groover, A -- Gunter, L -- Hamberger, B -- Heinze, B -- Helariutta, Y -- Henrissat, B -- Holligan, D -- Holt, R -- Huang, W -- Islam-Faridi, N -- Jones, S -- Jones-Rhoades, M -- Jorgensen, R -- Joshi, C -- Kangasjarvi, J -- Karlsson, J -- Kelleher, C -- Kirkpatrick, R -- Kirst, M -- Kohler, A -- Kalluri, U -- Larimer, F -- Leebens-Mack, J -- Leple, J-C -- Locascio, P -- Lou, Y -- Lucas, S -- Martin, F -- Montanini, B -- Napoli, C -- Nelson, D R -- Nelson, C -- Nieminen, K -- Nilsson, O -- Pereda, V -- Peter, G -- Philippe, R -- Pilate, G -- Poliakov, A -- Razumovskaya, J -- Richardson, P -- Rinaldi, C -- Ritland, K -- Rouze, P -- Ryaboy, D -- Schmutz, J -- Schrader, J -- Segerman, B -- Shin, H -- Siddiqui, A -- Sterky, F -- Terry, A -- Tsai, C-J -- Uberbacher, E -- Unneberg, P -- Vahala, J -- Wall, K -- Wessler, S -- Yang, G -- Yin, T -- Douglas, C -- Marra, M -- Sandberg, G -- Van de Peer, Y -- Rokhsar, D -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1596-604.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. gtk@ornl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973872" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Chromosome Mapping ; Computational Biology ; Evolution, Molecular ; Expressed Sequence Tags ; *Gene Duplication ; Gene Expression ; Genes, Plant ; *Genome, Plant ; Oligonucleotide Array Sequence Analysis ; Phylogeny ; Plant Proteins/chemistry/genetics ; Polymorphism, Single Nucleotide ; Populus/*genetics/growth & development/metabolism ; Protein Structure, Tertiary ; RNA, Plant/analysis ; RNA, Untranslated/analysis ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-03-25
    Description: Tracheal cytotoxin (TCT), a naturally occurring fragment of Gram-negative peptidoglycan, is a potent elicitor of innate immune responses in Drosophila. It induces the heterodimerization of its recognition receptors, the peptidoglycan recognition proteins (PGRPs) LCa and LCx, which activates the immune deficiency pathway. The crystal structure at 2.1 angstrom resolution of TCT in complex with the ectodomains of PGRP-LCa and PGRP-LCx shows that TCT is bound to and presented by the LCx ectodomain for recognition by the LCa ectodomain; the latter lacks a canonical peptidoglycan-docking groove conserved in other PGRPs. The interface, revealed in atomic detail, between TCT and the receptor complex highlights the importance of the anhydro-containing disaccharide in bridging the two ectodomains together and the critical role of diaminopimelic acid as the specificity determinant for PGRP interaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Chung-I -- Chelliah, Yogarany -- Borek, Dominika -- Mengin-Lecreulx, Dominique -- Deisenhofer, Johann -- New York, N.Y. -- Science. 2006 Mar 24;311(5768):1761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, TX 75390-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556841" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Cytotoxins/*chemistry/metabolism ; Drosophila melanogaster ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Peptidoglycan/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-07-22
    Description: CorA family members are ubiquitously distributed transporters of divalent metal cations and are considered to be the primary Mg2+ transporter of Bacteria and Archaea. We have determined a 2.9 angstrom resolution structure of CorA from Thermotoga maritima that reveals a pentameric cone-shaped protein. Two potential regulatory metal binding sites are found in the N-terminal domain that bind both Mg2+ and Co2+. The structure of CorA supports an efflux system involving dehydration and rehydration of divalent metal ions potentially mediated by a ring of conserved aspartate residues at the cytoplasmic entrance and a carbonyl funnel at the periplasmic side of the pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eshaghi, Said -- Niegowski, Damian -- Kohl, Andreas -- Martinez Molina, Daniel -- Lesley, Scott A -- Nordlund, Par -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden. Said.Eshaghi@ki.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857941" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cation Transport Proteins/*chemistry/metabolism ; Chlorides/analysis/metabolism ; Cobalt/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Magnesium/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Thermotoga maritima/*chemistry ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-01-28
    Description: The postsynaptic density (PSD) is a complex assembly of proteins associated with the postsynaptic membrane that organizes neurotransmitter receptors, signaling pathways, and regulatory elements within a cytoskeletal matrix. Here we show that the sterile alpha motif domain of rat Shank3/ProSAP2, a master scaffolding protein located deep within the PSD, can form large sheets composed of helical fibers stacked side by side. Zn2+, which is found in high concentrations in the PSD, binds tightly to Shank3 and may regulate assembly. Sheets of the Shank protein could form a platform for the construction of the PSD complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baron, Marisa K -- Boeckers, Tobias M -- Vaida, Bianca -- Faham, Salem -- Gingery, Mari -- Sawaya, Michael R -- Salyer, Danielle -- Gundelfinger, Eckart D -- Bowie, James U -- R01 CA081000/CA/NCI NIH HHS/ -- R01 GM063919/GM/NIGMS NIH HHS/ -- R01 GM063919-07/GM/NIGMS NIH HHS/ -- R01 GM063919-08/GM/NIGMS NIH HHS/ -- R01 GM075922/GM/NIGMS NIH HHS/ -- R01 GM075922-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):531-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439662" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/analysis/*chemistry/genetics/metabolism ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Hippocampus/chemistry ; Microscopy, Electron ; Models, Molecular ; Mutation ; Nerve Tissue Proteins ; Neurons/chemistry ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rats ; Recombinant Fusion Proteins/analysis ; Solubility ; Synapses/*chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-10
    Description: Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meinecke, Michael -- Wagner, Richard -- Kovermann, Peter -- Guiard, Bernard -- Mick, David U -- Hutu, Dana P -- Voos, Wolfgang -- Truscott, Kaye N -- Chacinska, Agnieszka -- Pfanner, Nikolaus -- Rehling, Peter -- New York, N.Y. -- Science. 2006 Jun 9;312(5779):1523-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysik, Universitat Osnabruck, FB Biologie/Chemie, D-49034 Osnabruck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763150" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane Permeability ; Liposomes ; Membrane Transport Proteins/metabolism ; Mitochondrial Membrane Transport Proteins/*metabolism ; Mitochondrial Membranes/*metabolism ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-02-04
    Description: The urokinase plasminogen activator binds to its cellular receptor with high affinity and initiates signaling cascades that are implicated in pathological processes including tumor growth, metastasis, and inflammation. We report the crystal structure at 1.9 angstroms of the urokinase receptor complexed with the urokinase amino-terminal fragment and an antibody against the receptor. The three domains of urokinase receptor form a concave shape with a central cone-shaped cavity where the urokinase fragment inserts. The structure provides insight into the flexibility of the urokinase receptor that enables its interaction with a wide variety of ligands and a basis for the design of urokinase-urokinase receptor antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huai, Qing -- Mazar, Andrew P -- Kuo, Alice -- Parry, Graham C -- Shaw, David E -- Callahan, Jennifer -- Li, Yongdong -- Yuan, Cai -- Bian, Chuanbing -- Chen, Liqing -- Furie, Bruce -- Furie, Barbara C -- Cines, Douglas B -- Huang, Mingdong -- R01 HL086584/HL/NHLBI NIH HHS/ -- R01 HL086584-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):656-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hemostasis and Thrombosis, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16456079" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/chemistry/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Peptide Fragments/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/immunology/metabolism ; Receptors, Urokinase Plasminogen Activator ; Urokinase-Type Plasminogen Activator/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-08-19
    Description: Eukaryotic flagella and cilia are built on a 9 + 2 array of microtubules plus 〉250 accessory proteins, forming a biological machine called the axoneme. Here we describe the three-dimensional structure of rapidly frozen axonemes from Chlamydomonas and sea urchin sperm, using cryoelectron tomography and image processing to focus on the motor enzyme dynein. Our images suggest a model for the way dynein generates force to slide microtubules. They also reveal two dynein linkers that may provide "hard-wiring" to coordinate motor enzyme action, both circumferentially and along the axoneme. Periodic densities were also observed inside doublet microtubules; these may contribute to doublet stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicastro, Daniela -- Schwartz, Cindi -- Pierson, Jason -- Gaudette, Richard -- Porter, Mary E -- McIntosh, J Richard -- 2R37-GM55667/GM/NIGMS NIH HHS/ -- RR 000592/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 18;313(5789):944-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, CB 347, University of Colorado, Boulder, CO 80309-0347, USA. nicastro@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16917055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/chemistry/ultrastructure ; Chlamydomonas reinhardtii/ultrastructure ; Cryoelectron Microscopy ; Dyneins/*chemistry/physiology/*ultrastructure ; Flagella/chemistry/physiology/*ultrastructure ; Freezing ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Male ; Microtubule-Associated Proteins ; Microtubules/chemistry/physiology/*ultrastructure ; Models, Biological ; Molecular Motor Proteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Sea Urchins ; Sperm Tail/chemistry/physiology/*ultrastructure ; Tomography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-03-11
    Description: A biosynthetic approach was developed to control and probe cooperativity in multiunit biomotor assemblies by linking molecular motors to artificial protein scaffolds. This approach provides precise control over spatial and elastic coupling between motors. Cooperative interactions between monomeric kinesin-1 motors attached to protein scaffolds enhance hydrolysis activity and microtubule gliding velocity. However, these interactions are not influenced by changes in the elastic properties of the scaffold, distinguishing multimotor transport from that powered by unorganized monomeric motors. These results highlight the role of supramolecular architecture in determining mechanisms of collective transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diehl, Michael R -- Zhang, Kechun -- Lee, Heun Jin -- Tirrell, David A -- New York, N.Y. -- Science. 2006 Mar 10;311(5766):1468-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. diehl@rice.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527982" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry ; Amino Acid Sequence ; Elasticity ; Elastin/chemistry ; Hydrolysis ; Kinesin/chemistry ; Microtubules/physiology ; Models, Biological ; Molecular Motor Proteins/*physiology ; Molecular Sequence Data ; Protein Engineering ; Protein Structure, Tertiary ; Proteins/chemistry/*physiology ; Recombinant Proteins/chemistry ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-07-15
    Description: The electric fields produced in folded proteins influence nearly every aspect of protein function. We present a vibrational spectroscopy technique that measures changes in electric field at a specific site of a protein as shifts in frequency (Stark shifts) of a calibrated nitrile vibration. A nitrile-containing inhibitor is used to deliver a unique probe vibration to the active site of human aldose reductase, and the response of the nitrile stretch frequency is measured for a series of mutations in the enzyme active site. These shifts yield quantitative information on electric fields that can be directly compared with electrostatics calculations. We show that extensive molecular dynamics simulations and ensemble averaging are required to reproduce the observed changes in field.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suydam, Ian T -- Snow, Christopher D -- Pande, Vijay S -- Boxer, Steven G -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):200-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16840693" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Reductase/antagonists & inhibitors/*chemistry/genetics/metabolism ; Binding Sites ; Circular Dichroism ; Computer Simulation ; *Electricity ; Enzyme Inhibitors/metabolism/pharmacology ; Humans ; Models, Molecular ; Mutation ; Nitriles/metabolism/pharmacology ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Spectrophotometry, Infrared ; Spectrum Analysis ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-01-18
    Description: The specialized ribonuclease Dicer initiates RNA interference by cleaving double-stranded RNA (dsRNA) substrates into small fragments about 25 nucleotides in length. In the crystal structure of an intact Dicer enzyme, the PAZ domain, a module that binds the end of dsRNA, is separated from the two catalytic ribonuclease III (RNase III) domains by a flat, positively charged surface. The 65 angstrom distance between the PAZ and RNase III domains matches the length spanned by 25 base pairs of RNA. Thus, Dicer itself is a molecular ruler that recognizes dsRNA and cleaves a specified distance from the helical end.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macrae, Ian J -- Zhou, Kaihong -- Li, Fei -- Repic, Adrian -- Brooks, Angela N -- Cande, W Zacheus -- Adams, Paul D -- Doudna, Jennifer A -- New York, N.Y. -- Science. 2006 Jan 13;311(5758):195-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16410517" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Conserved Sequence ; Crystallography, X-Ray ; Giardia lamblia/enzymology ; Humans ; Lanthanoid Series Elements/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; RNA Interference ; RNA, Double-Stranded/*metabolism ; RNA, Protozoan/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Ribonuclease III/*chemistry/metabolism ; Schizosaccharomyces/genetics ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...