ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (144)
  • Lunar and Planetary Science and Exploration  (144)
  • 550 - Earth sciences
  • AIRCRAFT DESIGN, TESTING AND PERFORMANCE
  • ASTROPHYSICS
  • Life and Medical Sciences
  • MATERIALS, METALLIC
  • Male
  • SPACE SCIENCES
  • 2010-2014
  • 2005-2009  (144)
  • 1975-1979
  • 1970-1974
  • 1965-1969
  • 1950-1954
  • 1925-1929
  • 2005  (144)
Collection
Years
  • 2010-2014
  • 2005-2009  (144)
  • 1975-1979
  • 1970-1974
  • 1965-1969
  • +
Year
  • 11
    Publication Date: 2017-10-02
    Description: Like Venus, the surface of Titan is hidden from view, with little known about its geology prior to Cassini. The first Synthetic Aperture Radar (SAR) swath across the surface of Titan has revealed a surprisingly complex surface, with few features that can be reliably identified as impact craters. More detailed reports on the results of the first radar encounter with Titan can be found in this volume.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-10-02
    Description: We present relative elemental abundances for six elements (Mg, Al, Si, S, Ca, Fe) in the surface layer of 433 Eros, derived from a new analysis of the solar induced fluorescence measured by the NEARShoemaker X ray Spectrometer (XRS).XRS derived elemental abundances have been presented before. However, calibration of XRS data depends critically on knowledge of the incident solar spectrum, which varies greatly on time scales of seconds to minutes. Unfortunately, the gas solar monitor carried by NEAR was inadequately calibrated prior to launch. The previously published XRS results were based partly on broadband measurements by the Earthorbiting GOES8 (Geostationary Operational Environmental Satellites) Xray detectors and partly on a preliminary solar monitor calibration carried out by the present authors. The new solar monitor calibration is based on a more recent set of physical models of the solar spectrum at various temperatures, an improved fitting procedure, analysis of a large number of flight spectra, and comparison with concurrent data from the GOES Xray detectors. In addition, the new analysis includes data from three solar flares not considered in earlier papers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 12; LPI-Contrib-1234-Pt-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-10-02
    Description: Basaltic ring structures (BRSs) are enigmatic, quasi-circular landforms in eastern Washington State that were first recognized in 1965. They remained a subject of geologic scrutiny through the 1970 s and subsequently faded from the spotlight, but recent Mars Orbiter Camera (MOC) images showing morphologically similar structures in Athabasca Valles, Mars, have sparked renewed interest in BRSs. The only known BRSs occur in the Channeled Scabland, a region where catastrophic Pleistocene floods from glacial Lake Missoula eroded into the Miocene flood basalts of the Columbia Plateau. The geologic setting of the martian ring structures (MRSs) is similar; Athabasca Valles is a young channel system that formed when catastrophic aqueous floods carved into a volcanic substrate. This study investigates the formation of terrestrial BRSs and examines the extent to which they are appropriate analogs for the MRSs in Athabasca Valles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 10; LPI-Contrib-1234-Pt-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-10-02
    Description: The Mars Exploration Rover (MER) landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong indicators of liquid water. The engineering constraints critical for safe landing were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing and targeted remote sensing data and models that resulted in a number of predictions of the surface characteristics of the sites, which are tested more fully herein than a preliminary assessment. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data and is essential for selecting and validating landing sites for future missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-10-02
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of mineralogy, thermophysical properties, and atmospheric temperature profile and composition of the outcrops, rocks, spherules, and soils surrounding the Spirit and Opportunity Rovers. The mineralogy of volcanic rocks provides insights into the composition of the source regions and the nature of martian igneous processes. Carbonates, sulfates, evaporites, and oxides provide information on the role of water in the surface evolution. Oxides, such as crystalline hematite, provide insight into aqueous weathering processes, as would the occurrence of clay minerals and other weathering products. Diurnal temperature measurements can be used to determine particle size and search for the effects of sub-surface layering, which in turn provide clues to the origin of surficial materials through rock disintegration, aeolian transport, atmospheric fallout, or induration. In addition to studying the surface properties, Mini-TES spectra have also been used to determine the temperature profile in the lower boundary layer, providing evidence for convective activity, and have determined the seasonal trends in atmospheric temperature and dust and cloud opacity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-16
    Description: Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 12; LPI-Contrib-1234-Pt-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 14, 2005 - Mar 18, 2005; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that epsilon W-182 values in the nakhlites are uniform within analytical uncertainties and have an average value of approx. 3. Also, while epsilon W-182 values in the shergottites have a limited range (from 0.3-0.7), their epsilon Nd-142 values vary considerably (from -0.2-0.9). There appears to be no correlation between epsilon W-182 and epsilon Nd-142 in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at approx. 12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before approx. 4542 Ma and the shergottite source reservoirs at 4525 [sup +19 sub -21] Ma. These ages imply that, within the uncertainties afforded by the Hf-182-W-182 and Sm-146-Nd-142 chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct W-182-Nd-142 isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the W-182-Nd-142 isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before approx. 4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geochimica et Cosmochimica Acts (ISSN 0016-7037); 69; 18; 4557-4571
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Drifting in the strong winds of Venus under benign Earth-like temperature and pressure conditions, an instrumented balloon-borne science station presents a viable means to explore, in-situ, the Venusian atmosphere on a global scale. Flying over the ground at speeds exceeding 240 km/hour while floating in the Venusian skies near 55 km altitude for several weeks, such an aerostat can conduct a 'world tour' of our neighboring planet, as it circumnavigates the globe multiple times during its flight from equatorial to polar latitudes. Onboard science sensors can repeatedly and directly sample gas compositions, atmospheric pressures and temperatures and cloud particle properties, giving unprecedented insight into the chemical processes occurring within the sulfuric clouds. Additionally, interferometric tracking via Earth-based radio observatories can yield positions and windspeeds to better than 10 cm/sec over one-hour periods, providing important information for understanding the planet's meridional circulation and enigmatic zonal super-rotation, as well as local dynamics associated with meteorological processes. As well, hundreds of GCMS spectra collected during the flight can provide measurements of noble gas compositions and their isotopes with unprecedented accuracy, thereby enabling fundamental new insights into Venus's origin and evolution.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary Probe Conference; Jul 01, 2005; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Deep plasmaspheric notches can extend over more than 2 R(sub E) in radial distance and 3 hours MLT in the magnetic equatorial plane, as observed by the extreme ultraviolet (EUV) imager on the IMAGE mission. They are among the largest evacuated features in the exterior plasmaspheric boundary. They can last for days and exhibit a variety of shapes. It appears that weak convection and limited erosion precedes notch formation at the westward, near-Earth edge of the convection plume. Eighteen clear notch events were found and analyzed in 2000. Among these events, notches were found to drift as slowly as 44% of corotation. In only one case was a notch found to drift at the corotation rate within measurement error. On average, these notches drift at about 21.5 h d(sup -1) or 90% of the corotational rate. Notches sometimes exhibit an interior structure that appears as an extended prominence of dense plasma, which forms a W- or M-like feature in IMAGE/EUV images, depending on viewing perspective. Initial modeling suggests that notches and notch prominences may be caused in part by intense small-scale potential structures that result from the localized injection of ring current plasma. Plasma filling rates during recovery are examined in three L shell ranges from L = 2 to L = 3.5 with rates ranging from 5 to 140 cm(sup -3) d(sup -1). Plasma loss during a minor substorm is found to extend to surprisingly low L shell with rates ranging from 100 to 130 cm(sup -3) d(sup -1) across the L shells examined.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Paper-2004JA010906 , Journal of Geophysical Research (ISSN 0148-0227); 100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...