ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (64)
  • Aerospace Medicine  (49)
  • Life and Medical Sciences
  • 2000-2004  (113)
  • 1995-1999
  • 2001  (113)
  • 1
    Publication Date: 2001-07-07
    Description: To illuminate the function and evolutionary history of both genomes, we sequenced mouse DNA related to human chromosome 19. Comparative sequence alignments yielded confirmatory evidence for hypothetical genes and identified exons, regulatory elements, and candidate genes that were missed by other predictive methods. Chromosome-wide comparisons revealed a difference between single-copy HSA19 genes, which are overwhelmingly conserved in mouse, and genes residing in tandem familial clusters, which differ extensively in number, coding capacity, and organization between the two species. Finally, we sequenced breakpoints of all 15 evolutionary rearrangements, providing a view of the forces that drive chromosome evolution in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, P -- Predki, P -- Olsen, A S -- Kobayashi, A -- Folta, P -- Lucas, S -- Land, M -- Terry, A -- Ecale Zhou, C L -- Rash, S -- Zhang, Q -- Gordon, L -- Kim, J -- Elkin, C -- Pollard, M J -- Richardson, P -- Rokhsar, D -- Uberbacher, E -- Hawkins, T -- Branscomb, E -- Stubbs, L -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):104-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441184" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Breakage/genetics ; Chromosomes, Human, Pair 19/*genetics ; Conserved Sequence/*genetics ; Contig Mapping ; DNA, Satellite/genetics ; *Evolution, Molecular ; Exons/genetics ; Expressed Sequence Tags ; Gene Dosage ; Gene Order/genetics ; Genetic Linkage/genetics ; Genome ; Humans ; Long Interspersed Nucleotide Elements/genetics ; Mice ; Multigene Family/genetics ; Open Reading Frames/genetics ; Phylogeny ; Sequence Alignment ; Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements/genetics ; Terminal Repeat Sequences/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-25
    Description: JNPL3 transgenic mice expressing a mutant tau protein, which develop neurofibrillary tangles and progressive motor disturbance, were crossed with Tg2576 transgenic mice expressing mutant beta-amyloid precursor protein (APP), thus modulating the APP-Abeta (beta-amyloid peptide) environment. The resulting double mutant (tau/APP) progeny and the Tg2576 parental strain developed Abeta deposits at the same age; however, relative to JNPL3 mice, the double mutants exhibited neurofibrillary tangle pathology that was substantially enhanced in the limbic system and olfactory cortex. These results indicate that either APP or Abeta influences the formation of neurofibrillary tangles. The interaction between Abeta and tau pathologies in these mice supports the hypothesis that a similar interaction occurs in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, J -- Dickson, D W -- Lin, W L -- Chisholm, L -- Corral, A -- Jones, G -- Yen, S H -- Sahara, N -- Skipper, L -- Yager, D -- Eckman, C -- Hardy, J -- Hutton, M -- McGowan, E -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1487-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Birdsall Building, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520987" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/metabolism/*pathology ; Amyloid beta-Peptides/*metabolism ; Amyloid beta-Protein Precursor/genetics/*metabolism ; Animals ; Brain/metabolism/*pathology ; Crosses, Genetic ; Disease Models, Animal ; Female ; Limbic System/metabolism/pathology ; Male ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Neurofibrillary Tangles/genetics/metabolism/*pathology ; Neurons/ultrastructure ; Peptide Fragments/metabolism ; Plaque, Amyloid/genetics/metabolism/*pathology ; RNA, Messenger/genetics/metabolism ; Sex Characteristics ; Solubility ; Spinal Cord/metabolism/pathology ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-12-26
    Description: Kruppel-like factor 6 (KLF6) is a zinc finger transcription factor of unknown function. Here, we show that the KLF6 gene is mutated in a subset of human prostate cancer. Loss-of-heterozygosity analysis revealed that one KLF6 allele is deleted in 77% (17 of 22) of primary prostate tumors. Sequence analysis of the retained KLF6 allele revealed mutations in 71% of these tumors. Functional studies confirm that whereas wild-type KLF6 up-regulates p21 (WAF1/CIP1) in a p53-independent manner and significantly reduces cell proliferation, tumor-derived KLF6 mutants do not. Our data suggest that KLF6 is a tumor suppressor gene involved in human prostate cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narla, G -- Heath, K E -- Reeves, H L -- Li, D -- Giono, L E -- Kimmelman, A C -- Glucksman, M J -- Narla, J -- Eng, F J -- Chan, A M -- Ferrari, A C -- Martignetti, J A -- Friedman, S L -- 5 P30 HD28822/HD/NICHD NIH HHS/ -- CA78207/CA/NCI NIH HHS/ -- CA79918/CA/NCI NIH HHS/ -- DK37340/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 1170F, Box 1123, New York, NY, 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752579" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Cell Division ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 10/genetics ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/genetics/metabolism ; *Genes, Tumor Suppressor ; Genetic Heterogeneity ; Humans ; Kruppel-Like Transcription Factors ; Loss of Heterozygosity ; Male ; Mice ; Microsatellite Repeats ; *Mutation ; Mutation, Missense ; Proliferating Cell Nuclear Antigen/metabolism ; Promoter Regions, Genetic ; Prostatic Neoplasms/*genetics ; *Proto-Oncogene Proteins ; Trans-Activators/chemistry/*genetics/physiology ; Transcriptional Activation ; Tumor Cells, Cultured ; Up-Regulation ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-03-17
    Description: The role of NF-kappaB-inducing kinase (NIK) in cytokine signaling remains controversial. To identify the physiologic functions of NIK, we disrupted the NIK locus by gene targeting. Although NIK-/- mice displayed abnormalities in both lymphoid tissue development and antibody responses, NIK-/- cells manifested normal NF-kappaB DNA binding activity when treated with a variety of cytokines, including tumor necrosis factor (TNF), interleukin-1 (IL-1), and lymphotoxin-beta (LTbeta). However, NIK was selectively required for gene transcription induced through ligation of LTbeta receptor but not TNF receptors. These results reveal that NIK regulates the transcriptional activity of NF-kappaB in a receptor-restricted manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, L -- Wu, L -- Wesche, H -- Arthur, C D -- White, J M -- Goeddel, D V -- Schreiber, R D -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2162-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; B-Lymphocytes/metabolism ; Cells, Cultured ; DNA/metabolism ; Fibroblasts/metabolism ; Gene Targeting ; Genes, Reporter ; Interleukin-1/metabolism/pharmacology ; Ligands ; Lymphoid Tissue/abnormalities ; Lymphotoxin beta Receptor ; Mice ; Mice, Inbred C57BL ; NF-kappa B/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/immunology/*metabolism ; Signal Transduction ; *Transcription, Genetic ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-03-27
    Description: Many intracellular pathogens infect a broad range of host tissues, but the importance of T cells for immunity in these sites is unclear because most of our understanding of antimicrobial T cell responses comes from analyses of lymphoid tissue. Here, we show that in response to viral or bacterial infection, antigen-specific CD8 T cells migrated to nonlymphoid tissues and were present as long-lived memory cells. Strikingly, CD8 memory T cells isolated from nonlymphoid tissues exhibited effector levels of lytic activity directly ex vivo, in contrast to their splenic counterparts. These results point to the existence of a population of extralymphoid effector memory T cells poised for immediate response to infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masopust, D -- Vezys, V -- Marzo, A L -- Lefrancois, L -- AI41576/AI/NIAID NIH HHS/ -- DK45260/DK/NIDDK NIH HHS/ -- T32-AI07080/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2413-7. Epub 2001 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264538" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Cell Movement ; Cells, Cultured ; Flow Cytometry ; H-2 Antigens/immunology ; *Immunologic Memory ; Intestine, Small/immunology ; Listeria monocytogenes/genetics/immunology ; Listeriosis/*immunology ; Liver/immunology ; Lung/immunology ; Lymphocyte Activation ; Lymphoid Tissue/immunology ; Mice ; Mice, Inbred C57BL ; Ovalbumin/immunology ; Phenotype ; Rhabdoviridae Infections/*immunology ; T-Lymphocyte Subsets/*immunology ; Vesicular stomatitis Indiana virus/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-08-18
    Description: B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, J S -- Bixler, S A -- Qian, F -- Vora, K -- Scott, M L -- Cachero, T G -- Hession, C -- Schneider, P -- Sizing, I D -- Mullen, C -- Strauch, K -- Zafari, M -- Benjamin, C D -- Tschopp, J -- Browning, J L -- Ambrose, C -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2108-11. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogen, 12 Cambridge Center, Cambridge, MA 02142, USA., The Institute of Biochemistry, University of Lausanne, CH-1066, Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Cell Maturation Antigen ; B-Lymphocytes/immunology/metabolism/*physiology ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 22 ; Cloning, Molecular ; Homeostasis ; Humans ; Ligands ; Lymphoid Tissue/metabolism ; Male ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred A ; Mice, Inbred C57BL ; Molecular Sequence Data ; RNA, Messenger/chemistry/genetics/metabolism ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transmembrane Activator and CAML Interactor Protein ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-09-08
    Description: Bcl-2 family members bearing only the BH3 domain are essential inducers of apoptosis. We identified a BH3-only protein, Bmf, and show that its BH3 domain is required both for binding to prosurvival Bcl-2 proteins and for triggering apoptosis. In healthy cells, Bmf is sequestered to myosin V motors by association with dynein light chain 2. Certain damage signals, such as loss of cell attachment (anoikis), unleash Bmf, allowing it to translocate and bind prosurvival Bcl-2 proteins. Thus, at least two mammalian BH3-only proteins, Bmf and Bim, function to sense intracellular damage by their localization to distinct cytoskeletal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puthalakath, H -- Villunger, A -- O'Reilly, L A -- Beaumont, J G -- Coultas, L -- Cheney, R E -- Huang, D C -- Strasser, A -- CA 80188/CA/NCI NIH HHS/ -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, P.O. Royal Melbourne Hospital, 3050 VIC, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546872" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Anoikis ; Apoptosis Regulatory Proteins ; Calmodulin-Binding Proteins/*metabolism ; Carrier Proteins/*chemistry/genetics/*metabolism ; Cell Line ; Cytoskeleton/metabolism ; *Drosophila Proteins ; Dyneins ; Gene Expression Profiling ; Humans ; *Membrane Proteins ; Mice ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; *Myosin Type V ; Neoplasm Proteins/genetics/metabolism ; Nerve Tissue Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-02-07
    Description: Human beings contain complex societies of indigenous microbes, yet little is known about how resident bacteria shape our physiology. We colonized germ-free mice with Bacteroides thetaiotaomicron, a prominent component of the normal mouse and human intestinal microflora. Global intestinal transcriptional responses to colonization were observed with DNA microarrays, and the cellular origins of selected responses were established by laser-capture microdissection. The results reveal that this commensal bacterium modulates expression of genes involved in several important intestinal functions, including nutrient absorption, mucosal barrier fortification, xenobiotic metabolism, angiogenesis, and postnatal intestinal maturation. These findings provide perspectives about the essential nature of the interactions between resident microorganisms and their hosts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hooper, L V -- Wong, M H -- Thelin, A -- Hansson, L -- Falk, P G -- Gordon, J I -- DK30292/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 2;291(5505):881-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11157169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroides/genetics/growth & development/*physiology ; Bifidobacterium/growth & development/physiology ; Colony Count, Microbial ; Cornified Envelope Proline-Rich Proteins ; Escherichia coli/growth & development/physiology ; Gastrointestinal Motility/genetics ; Gene Expression Profiling ; *Gene Expression Regulation ; Germ-Free Life ; Humans ; Ileum/cytology/immunology/*metabolism/*microbiology ; Intestinal Absorption/genetics ; Intestinal Mucosa/cytology/immunology/*metabolism/*microbiology ; Male ; Matched-Pair Analysis ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, Inbred Strains ; Mutation ; Neovascularization, Physiologic/genetics ; Oligonucleotide Array Sequence Analysis ; Protein Precursors/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Xenobiotics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...