ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Male  (42)
  • Adult  (13)
  • American Association for the Advancement of Science (AAAS)  (47)
  • 1995-1999  (47)
  • 1980-1984
  • 1998  (47)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (47)
Years
  • 1995-1999  (47)
  • 1980-1984
Year
  • 1
    Publication Date: 1998-06-20
    Description: Usher syndrome type IIa (OMIM 276901), an autosomal recessive disorder characterized by moderate to severe sensorineural hearing loss and progressive retinitis pigmentosa, maps to the long arm of human chromosome 1q41 between markers AFM268ZD1 and AFM144XF2. Three biologically important mutations in Usher syndrome type IIa patients were identified in a gene (USH2A) isolated from this critical region. The USH2A gene encodes a protein with a predicted size of 171.5 kilodaltons that has laminin epidermal growth factor and fibronectin type III motifs; these motifs are most commonly observed in proteins comprising components of the basal lamina and extracellular matrixes and in cell adhesion molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eudy, J D -- Weston, M D -- Yao, S -- Hoover, D M -- Rehm, H L -- Ma-Edmonds, M -- Yan, D -- Ahmad, I -- Cheng, J J -- Ayuso, C -- Cremers, C -- Davenport, S -- Moller, C -- Talmadge, C B -- Beisel, K W -- Tamayo, M -- Morton, C C -- Swaroop, A -- Kimberling, W J -- Sumegi, J -- 5PO1 DC01813-05/DC/NIDCD NIH HHS/ -- DC03402/DC/NIDCD NIH HHS/ -- EY07003/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1753-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624053" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Adhesion Molecules/chemistry ; Chromosome Mapping ; Chromosomes, Human, Pair 1 ; Cochlea/chemistry ; Epidermal Growth Factor/chemistry ; Extracellular Matrix Proteins/chemistry/*genetics/physiology ; Female ; Fibronectins/chemistry ; Frameshift Mutation ; Gene Expression ; Genes, Recessive ; Glycosylation ; Hearing Loss, Sensorineural/*genetics ; Humans ; Laminin/chemistry ; Male ; Molecular Sequence Data ; Pedigree ; Retina/chemistry ; Retinitis Pigmentosa/*genetics ; Syndrome ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-08-07
    Description: Dopaminergic neurons exert a major modulatory effect on the forebrain. Dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein (32 kilodaltons) (DARPP-32), which is enriched in all neurons that receive a dopaminergic input, is converted in response to dopamine into a potent protein phosphatase inhibitor. Mice generated to contain a targeted disruption of the DARPP-32 gene showed profound deficits in their molecular, electrophysiological, and behavioral responses to dopamine, drugs of abuse, and antipsychotic medication. The results show that DARPP-32 plays a central role in regulating the efficacy of dopaminergic neurotransmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fienberg, A A -- Hiroi, N -- Mermelstein, P G -- Song, W -- Snyder, G L -- Nishi, A -- Cheramy, A -- O'Callaghan, J P -- Miller, D B -- Cole, D G -- Corbett, R -- Haile, C N -- Cooper, D C -- Onn, S P -- Grace, A A -- Ouimet, C C -- White, F J -- Hyman, S E -- Surmeier, D J -- Girault, J -- Nestler, E J -- Greengard, P -- DA 08227/DA/NIDA NIH HHS/ -- DA10044/DA/NIDA NIH HHS/ -- F31 DA005794/DA/NIDA NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):838-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694658" target="_blank"〉PubMed〈/a〉
    Keywords: Amphetamines/pharmacology ; Animals ; Behavior, Animal/drug effects ; Calcium/metabolism ; Cocaine/pharmacology ; Corpus Striatum/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dopamine/pharmacology/*physiology ; Dopamine Agents/pharmacology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Female ; Gene Expression Regulation ; Gene Targeting ; Genes, fos ; Glutamic Acid/pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/genetics/*metabolism ; Neurons/*metabolism ; Phosphoprotein Phosphatases/metabolism ; *Phosphoproteins ; Phosphorylation ; Raclopride ; Receptors, Dopamine D1/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Salicylamides/pharmacology ; Sodium-Potassium-Exchanging ATPase/metabolism ; *Synaptic Transmission ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-06-11
    Description: The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gekakis, N -- Staknis, D -- Nguyen, H B -- Davis, F C -- Wilsbacher, L D -- King, D P -- Takahashi, J S -- Weitz, C J -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1564-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616112" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/genetics/*physiology ; Cloning, Molecular ; Cricetinae ; DNA/metabolism ; Dimerization ; Feedback ; Gene Expression ; Helix-Loop-Helix Motifs ; Male ; Mesocricetus ; Mice ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-09-22
    Description: Fertilin, a member of the ADAM family, is found on the plasma membrane of mammalian sperm. Sperm from mice lacking fertilin beta were shown to be deficient in sperm-egg membrane adhesion, sperm-egg fusion, migration from the uterus into the oviduct, and binding to the egg zona pellucida. Egg activation was unaffected. The results are consistent with a direct role of fertilin in sperm-egg plasma membrane interaction. Fertilin could also have a direct role in sperm-zona binding or oviduct migration; alternatively, the effects on these functions could result from the absence of fertilin activity during spermatogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, C -- Bunch, D O -- Faure, J E -- Goulding, E H -- Eddy, E M -- Primakoff, P -- Myles, D G -- HD16580/HD/NICHD NIH HHS/ -- U54HD29125/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1857-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743500" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Animals ; Calcium/metabolism ; Cell Adhesion ; Cell Membrane/physiology ; Fallopian Tubes ; Female ; Male ; Membrane Fusion ; Membrane Glycoproteins/genetics/metabolism/*physiology ; Metalloendopeptidases/genetics/metabolism/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Ovum/physiology ; Sperm Capacitation ; *Sperm-Ovum Interactions ; Spermatogenesis ; Spermatozoa/chemistry/*physiology ; Zona Pellucida/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-06-20
    Description: In humans, interferon gamma (IFN-gamma) receptor deficiency leads to a predisposition to mycobacterial infections and impairs the formation of mature granulomas. Interleukin-12 (IL-12) receptor deficiency was found in otherwise healthy individuals with mycobacterial infections. Mature granulomas were seen, surrounded by T cells and centered with epithelioid and multinucleated giant cells, yet reduced IFN-gamma concentrations were found to be secreted by activated natural killer and T cells. Thus, IL-12-dependent IFN-gamma secretion in humans seems essential in the control of mycobacterial infections, despite the formation of mature granulomas due to IL-12-independent IFN-gamma secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altare, F -- Durandy, A -- Lammas, D -- Emile, J F -- Lamhamedi, S -- Le Deist, F -- Drysdale, P -- Jouanguy, E -- Doffinger, R -- Bernaudin, F -- Jeppsson, O -- Gollob, J A -- Meinl, E -- Segal, A W -- Fischer, A -- Kumararatne, D -- Casanova, J L -- New York, N.Y. -- Science. 1998 May 29;280(5368):1432-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U429, Hopital Necker-Enfants Malades, Paris 75015, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9603732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytotoxicity, Immunologic ; Female ; Granuloma/immunology ; Humans ; Hypersensitivity, Delayed ; Interferon-gamma/biosynthesis/immunology/secretion ; Interleukin-12/*immunology ; Killer Cells, Natural/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Knockout ; Mutation ; Mycobacterium avium-intracellulare Infection/*immunology ; *Mycobacterium bovis ; Pedigree ; Receptors, Interferon/genetics/immunology ; Receptors, Interleukin/deficiency/*genetics ; Receptors, Interleukin-12 ; T-Lymphocytes/immunology ; Tuberculosis/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-09-11
    Description: The localization of substance P in brain regions that coordinate stress responses and receive convergent monoaminergic innervation suggested that substance P antagonists might have psychotherapeutic properties. Like clinically used antidepressant and anxiolytic drugs, substance P antagonists suppressed isolation-induced vocalizations in guinea pigs. In a placebo-controlled trial in patients with moderate to severe major depression, robust antidepressant effects of the substance P antagonist MK-869 were consistently observed. In preclinical studies, substance P antagonists did not interact with monoamine systems in the manner seen with established antidepressant drugs. These findings suggest that substance P may play an important role in psychiatric disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kramer, M S -- Cutler, N -- Feighner, J -- Shrivastava, R -- Carman, J -- Sramek, J J -- Reines, S A -- Liu, G -- Snavely, D -- Wyatt-Knowles, E -- Hale, J J -- Mills, S G -- MacCoss, M -- Swain, C J -- Harrison, T -- Hill, R G -- Hefti, F -- Scolnick, E M -- Cascieri, M A -- Chicchi, G G -- Sadowski, S -- Williams, A R -- Hewson, L -- Smith, D -- Carlson, E J -- Hargreaves, R J -- Rupniak, N M -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1640-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, West Point, PA 19456, USA. Mark_Kramer@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733503" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Amygdala/drug effects/metabolism ; Animals ; Antidepressive Agents, Second-Generation/adverse ; effects/metabolism/pharmacology/*therapeutic use ; Behavior, Animal/drug effects ; Brain/drug effects/metabolism ; Depressive Disorder/*drug therapy/etiology/metabolism ; Female ; Gerbillinae ; Guinea Pigs ; Humans ; Male ; Middle Aged ; Morpholines/adverse effects/metabolism/pharmacology/*therapeutic use ; *Neurokinin-1 Receptor Antagonists ; Norepinephrine/physiology ; Paroxetine/therapeutic use ; Receptors, Neurokinin-1/metabolism ; Serotonin/physiology ; Stress, Psychological/drug therapy ; Substance P/*antagonists & inhibitors/metabolism ; Vocalization, Animal/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-05-09
    Description: Human and simian immunodeficiency virus (HIV and SIV) replicate optimally in activated memory CD4(+) T cells, a cell type that is abundant in the intestine. SIV infection of rhesus monkeys resulted in profound and selective depletion of CD4+ T cells in the intestine within days of infection, before any such changes in peripheral lymphoid tissues. The loss of CD4+ T cells in the intestine occurred coincident with productive infection of large numbers of mononuclear cells at this site. The intestine appears to be a major target for SIV replication and the major site of CD4+ T cell loss in early SIV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veazey, R S -- DeMaria, M -- Chalifoux, L V -- Shvetz, D E -- Pauley, D R -- Knight, H L -- Rosenzweig, M -- Johnson, R P -- Desrosiers, R C -- Lackner, A A -- AI25328/AI/NIAID NIH HHS/ -- AI38559/AI/NIAID NIH HHS/ -- DK50550/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):427-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New England Regional Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Post Office Box 9102, Southborough, MA 01772, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545219" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4 Lymphocyte Count ; CD4-Positive T-Lymphocytes/*immunology/virology ; Colon/*immunology/virology ; Immunity, Mucosal ; Immunologic Memory ; Intestinal Mucosa/immunology/virology ; Intestine, Small/*immunology/virology ; Lymphocyte Activation ; Lymphocytes/immunology/virology ; Lymphoid Tissue/immunology/virology ; Macaca mulatta ; Macrophages/virology ; Male ; Receptors, Interleukin-2/analysis ; Simian Acquired Immunodeficiency Syndrome/*immunology/*virology ; Simian Immunodeficiency Virus/immunology/pathogenicity/*physiology ; Viral Load ; Virulence ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-12-16
    Description: The c-Jun NH2-terminal kinase (JNK) signaling pathway has been implicated in the immune response that is mediated by the activation and differentiation of CD4 helper T (TH) cells into TH1 and TH2 effector cells. JNK activity observed in wild-type activated TH cells was severely reduced in TH cells from Jnk1-/- mice. The Jnk1-/- T cells hyperproliferated, exhibited decreased activation-induced cell death, and preferentially differentiated to TH2 cells. The enhanced production of TH2 cytokines by Jnk1-/- cells was associated with increased nuclear accumulation of the transcription factor NFATc. Thus, the JNK1 signaling pathway plays a key role in T cell receptor-initiated TH cell proliferation, apoptosis, and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, C -- Yang, D D -- Wysk, M -- Whitmarsh, A J -- Davis, R J -- Flavell, R A -- CA65861/CA/NCI NIH HHS/ -- CA72009/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2092-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; Cell Differentiation ; Cell Division ; DNA-Binding Proteins/metabolism ; Female ; Gene Targeting ; Hemocyanin/immunology ; Interferon-gamma/biosynthesis ; Interleukins/biosynthesis ; JNK Mitogen-Activated Protein Kinases ; *Lymphocyte Activation ; Male ; Mice ; Mice, Knockout ; *Mitogen-Activated Protein Kinases ; NFATC Transcription Factors ; *Nuclear Proteins ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; Th1 Cells/cytology/immunology ; Th2 Cells/cytology/immunology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-01-31
    Description: The cerebral cortex of Alzheimer's and Down syndrome patients is characterized by the presence of protein deposits in neurofibrillary tangles, neuritic plaques, and neuropil threads. These structures were shown to contain forms of beta amyloid precursor protein and ubiquitin-B that are aberrant (+1 proteins) in the carboxyl terminus. The +1 proteins were not found in young control patients, whereas the presence of ubiquitin-B+1 in elderly control patients may indicate early stages of neurodegeneration. The two species of +1 proteins displayed cellular colocalization, suggesting a common origin, operating at the transcriptional level or by posttranscriptional editing of RNA. This type of transcript mutation is likely an important factor in the widely occurring nonfamilial early- and late-onset forms of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Leeuwen, F W -- de Kleijn, D P -- van den Hurk, H H -- Neubauer, A -- Sonnemans, M A -- Sluijs, J A -- Koycu, S -- Ramdjielal, R D -- Salehi, A -- Martens, G J -- Grosveld, F G -- Peter, J -- Burbach, H -- Hol, E M -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):242-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School for Neurosciences Amsterdam, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands. f.van.leeuwen@nih.knaw.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9422699" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aging/genetics ; Alzheimer Disease/*genetics/metabolism/pathology ; Amino Acid Sequence ; Amyloid beta-Protein Precursor/analysis/chemistry/*genetics ; Base Sequence ; *Brain Chemistry ; Cerebral Cortex/chemistry/pathology ; Cloning, Molecular ; Down Syndrome/*genetics/metabolism/pathology ; Female ; *Frameshift Mutation ; Hippocampus/chemistry/pathology ; Humans ; Male ; Molecular Sequence Data ; Neurites/chemistry ; Neurofibrillary Tangles/chemistry ; Neuropil/chemistry ; Polymerase Chain Reaction ; RNA Editing ; Repetitive Sequences, Nucleic Acid ; Sequence Deletion ; Transcription, Genetic ; Ubiquitins/analysis/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-08-26
    Description: A fundamental question about human memory is why some experiences are remembered whereas others are forgotten. Brain activation during word encoding was measured using blocked and event-related functional magnetic resonance imaging to examine how neural activation differs for subsequently remembered and subsequently forgotten experiences. Results revealed that the ability to later remember a verbal experience is predicted by the magnitude of activation in left prefrontal and temporal cortices during that experience. These findings provide direct evidence that left prefrontal and temporal regions jointly promote memory formation for verbalizable events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, A D -- Schacter, D L -- Rotte, M -- Koutstaal, W -- Maril, A -- Dale, A M -- Rosen, B R -- Buckner, R L -- AG05778/AG/NIA NIH HHS/ -- AG08441/AG/NIA NIH HHS/ -- DC03245-02/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 21;281(5380):1188-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital NMR Center, Harvard Medical School, Charlestown, MA 02129, USA. adwagner@nmr.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9712582" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Brain Mapping ; Female ; Humans ; Magnetic Resonance Imaging ; Male ; Memory/*physiology ; Perception ; Prefrontal Cortex/*physiology ; Temporal Lobe/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...