ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (27)
  • American Association for the Advancement of Science (AAAS)  (27)
  • Springer Nature
  • 2000-2004
  • 1995-1999  (27)
  • 1980-1984
  • 1970-1974
  • 1940-1944
  • 1998  (27)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (27)
  • Springer Nature
Years
  • 2000-2004
  • 1995-1999  (27)
  • 1980-1984
  • 1970-1974
  • 1940-1944
Year
  • 1
    Publication Date: 1998-04-16
    Description: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Ghosh, D K -- Wu, C -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2121-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9516116" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/*metabolism ; Binding Sites ; Biopterin/*analogs & derivatives/chemistry/metabolism ; Citrulline/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Isoenzymes/chemistry/metabolism ; Ligands ; Macrophages/enzymology ; Mice ; Models, Molecular ; Nitric Oxide/biosynthesis ; Nitric Oxide Synthase/*chemistry/metabolism ; Nitric Oxide Synthase Type II ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Thiourea/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-09-25
    Description: Phosphorylation sites in members of the protein kinase A (PKA), PKG, and PKC kinase subfamily are conserved. Thus, the PKB kinase PDK1 may be responsible for the phosphorylation of PKC isotypes. PDK1 phosphorylated the activation loop sites of PKCzeta and PKCdelta in vitro and in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner in vivo in human embryonic kidney (293) cells. All members of the PKC family tested formed complexes with PDK1. PDK1-dependent phosphorylation of PKCdelta in vitro was stimulated by combined PKC and PDK1 activators. The activation loop phosphorylation of PKCdelta in response to serum stimulation of cells was PI 3-kinase-dependent and was enhanced by PDK1 coexpression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Le Good, J A -- Ziegler, W H -- Parekh, D B -- Alessi, D R -- Cohen, P -- Parker, P J -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9748166" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Binding Sites ; Cell Line ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Isoenzymes/*metabolism ; Morpholines/pharmacology ; Phosphatidylcholines/pharmacology ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol Phosphates ; Phosphatidylserines/pharmacology ; Phosphorylation ; Protein Kinase C/*metabolism ; Protein Kinase C beta ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Proteins/metabolism ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-07-24
    Description: Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, N S -- Wodicka, L -- Thunnissen, A M -- Norman, T C -- Kwon, S -- Espinoza, F H -- Morgan, D O -- Barnes, G -- LeClerc, S -- Meijer, L -- Kim, S H -- Lockhart, D J -- Schultz, P G -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):533-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677190" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/chemistry/metabolism/pharmacology ; Binding Sites ; *CDC2-CDC28 Kinases ; CDC28 Protein Kinase, S cerevisiae/antagonists & inhibitors ; Cell Division/drug effects ; Crystallography, X-Ray ; Cyclin A/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors ; Drug Evaluation, Preclinical ; Flavonoids/chemistry/metabolism/pharmacology ; Gene Expression Regulation, Fungal/drug effects ; Genes, Fungal ; Humans ; Hydrogen Bonding ; Oligonucleotide Probes ; Phosphates/metabolism ; Piperidines/chemistry/metabolism/pharmacology ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Purines/chemical synthesis/chemistry/metabolism/*pharmacology ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/enzymology/genetics ; Structure-Activity Relationship ; Transcription, Genetic/drug effects ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-06-25
    Description: The entry of primate immunodeficiency viruses into target cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors, CD4 and members of the chemokine receptor family. The gp120 third variable (V3) loop has been implicated in chemokine receptor binding, but the use of the CCR5 chemokine receptor by diverse primate immunodeficiency viruses suggests the involvement of an additional, conserved gp120 element. Through the use of gp120 mutants, a highly conserved gp120 structure was shown to be critical for CCR5 binding. This structure is located adjacent to the V3 loop and contains neutralization epitopes induced by CD4 binding. This conserved element may be a useful target for pharmacologic or prophylactic intervention in human immunodeficiency virus (HIV) infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizzuto, C D -- Wyatt, R -- Hernandez-Ramos, N -- Sun, Y -- Kwong, P D -- Hendrickson, W A -- Sodroski, J -- AI 40895/AI/NIAID NIH HHS/ -- AI 41851/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1949-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632396" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD4/metabolism ; Binding Sites ; Crystallization ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/immunology/*metabolism ; HIV-1/*chemistry/immunology ; Humans ; Models, Molecular ; Peptide Fragments/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Receptors, CCR5/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-01-24
    Description: The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40 years, its precise mode of action has remained obscure. Data from x-ray crystallography and mass spectrometry reveal that the mechanism of isoniazid action against InhA is covalent attachment of the activated form of the drug to the nicotinamide ring of nicotinamide adenine dinucleotide bound within the active site of InhA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rozwarski, D A -- Grant, G A -- Barton, D H -- Jacobs, W R Jr -- Sacchettini, J C -- AI-36849/AI/NIAID NIH HHS/ -- GM-45859/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):98-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417034" target="_blank"〉PubMed〈/a〉
    Keywords: Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins ; Binding Sites ; Biotransformation ; Crystallography, X-Ray ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Fatty Acid Synthases/antagonists & inhibitors/chemistry/genetics/metabolism ; Isoniazid/metabolism/*pharmacology ; Mass Spectrometry ; Models, Molecular ; Mutation ; Mycobacterium tuberculosis/*drug effects/enzymology ; Mycolic Acids/metabolism ; NAD/chemistry/*metabolism ; Oxidoreductases/*antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-05-23
    Description: Anthrax lethal toxin, produced by the bacterium Bacillus anthracis, is the major cause of death in animals infected with anthrax. One component of this toxin, lethal factor (LF), is suspected to be a metalloprotease, but no physiological substrates have been identified. Here it is shown that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and MAPKK2) and that this cleavage inactivates MAPKK1 and inhibits the MAPK signal transduction pathway. The identification of a cleavage site for LF may facilitate the development of LF inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duesbery, N S -- Webb, C P -- Leppla, S H -- Gordon, V M -- Klimpel, K R -- Copeland, T D -- Ahn, N G -- Oskarsson, M K -- Fukasawa, K -- Paull, K D -- Vande Woude, G F -- New York, N.Y. -- Science. 1998 May 1;280(5364):734-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Post Office Box B, Frederick, MD 21702.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563949" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, Bacterial ; *Bacillus anthracis/enzymology ; Bacterial Toxins/metabolism/*toxicity ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cell Line, Transformed ; Enzyme Activation ; Enzyme Inhibitors/toxicity ; Humans ; MAP Kinase Kinase 1 ; MAP Kinase Kinase 2 ; Metalloendopeptidases/metabolism/toxicity ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; Myelin Basic Protein/metabolism ; Oocytes/physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-08-07
    Description: Clathrin-mediated endocytosis involves cycles of assembly and disassembly of clathrin coat components and their accessory proteins. Dephosphorylation of rat brain extract was shown to promote the assembly of dynamin 1, synaptojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. Phosphorylation of dynamin 1 and synaptojanin 1 inhibited their binding to amphiphysin, whereas phosphorylation of amphiphysin inhibited its binding to AP-2 and clathrin. Thus, phosphorylation regulates the association and dissociation cycle of the clathrin-based endocytic machinery, and calcium-dependent dephosphorylation of endocytic proteins could prepare nerve terminals for a burst of endocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slepnev, V I -- Ochoa, G C -- Butler, M H -- Grabs, D -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694653" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Protein Complex beta Subunits ; Adaptor Proteins, Vesicular Transport ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Carbazoles/pharmacology ; Chromatography, Affinity ; Clathrin/*metabolism ; Cyclosporine/pharmacology ; Dimerization ; Dynamin I ; Dynamins ; *Endocytosis ; Enzyme Inhibitors/pharmacology ; GTP Phosphohydrolases/*metabolism ; Indole Alkaloids ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/*metabolism ; Phosphoric Monoester Hydrolases/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-02-21
    Description: CREB binding protein (CBP) functions as an essential coactivator of transcription factors that are inhibited by the adenovirus early gene product E1A. Transcriptional activation by the signal transducer and activator of transcription-1 (STAT1) protein requires the C/H3 domain in CBP, which is the primary target of E1A inhibition. Here it was found that the C/H3 domain is not required for retinoic acid receptor (RAR) function, nor is it involved in E1A inhibition. Instead, E1A inhibits RAR function by preventing the assembly of CBP-nuclear receptor coactivator complexes, revealing differences in required CBP domains for transcriptional activation by RAR and STAT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurokawa, R -- Kalafus, D -- Ogliastro, M H -- Kioussi, C -- Xu, L -- Torchia, J -- Rosenfeld, M G -- Glass, C K -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445474" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/*metabolism/pharmacology ; Animals ; Binding Sites ; CREB-Binding Protein ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/metabolism ; Histone Acetyltransferases ; Humans ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 3 ; Protein Binding ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Tretinoin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-16
    Description: More than 3 percent of the protein sequences inferred from the Caenorhabditis elegans genome contain sequence motifs characteristic of zinc-binding structural domains, and of these more than half are believed to be sequence-specific DNA-binding proteins. The distribution of these zinc-binding domains among the genomes of various organisms offers insights into the role of zinc-binding proteins in evolution. In addition, the complete genome sequence of C. elegans provides an opportunity to analyze, and perhaps predict, pathways of transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarke, N D -- Berg, J M -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2018-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*chemistry/genetics/metabolism ; *Caenorhabditis elegans Proteins ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Evolution, Molecular ; GATA Transcription Factors ; Gene Expression Regulation ; Helminth Proteins/*chemistry/genetics/metabolism ; Membrane Proteins/chemistry/genetics/metabolism ; Receptors, Cell Surface/chemistry/genetics ; Trans-Activators/chemistry/genetics/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...