ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Launch Vehicles and Launch Operations  (11)
  • AERODYNAMICS  (4)
  • STRUCTURAL MECHANICS
  • 2005-2009  (11)
  • 1990-1994  (8)
  • 1960-1964
  • 2008  (11)
  • 1992  (8)
Collection
Years
  • 2005-2009  (11)
  • 1990-1994  (8)
  • 1960-1964
Year
  • 1
    Publication Date: 2013-08-31
    Description: The objective of this paper is to describe current results from an on-going study of the mechanisms that led to the failure of the TIBB. Experimental and analytical results are presented. Experimental results include load, strain, and deflection data for the TIBB (Technology Integration Box Beam). An analytical investigation was conducted to compliment the experimental investigation and to gain additional insight into the TIBB structural response. Analytical results include strain and deflection results from a global analysis of the TIBB. A local analysis of the failure region is being completed. These analytical results are validated through comparisons with the experimental results from the TIBB tests. The experimental and analytical results from the TIBB tests are used to determine a sequence of events that may have resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Typical analytical results are presented for a stiffener runout specimen that is being defined to simulate the TIBB failure mechanisms. The results of this study are anticipated to provide better understanding of potential failure mechanisms in composite aircraft structures, to lead to future design improvements, and to identify needed analytical tools for design and analysis.
    Keywords: STRUCTURAL MECHANICS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2; p 673-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
    Keywords: STRUCTURAL MECHANICS
    Type: International Journal for Numerical Methods in Engineering (ISSN 0029-5981); 33; 855-868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.
    Keywords: AERODYNAMICS
    Type: NASA-CR-189854 , NAS 1.26:189854
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Results of an experimental investigation of a symmetric crossing shock/turbulent boundary layer interaction are presented for a Mach number of 3.44 and deflections angles of 2, 6, 8 and 9 deg. The interaction strengths vary from weak to strong enough to cause a large region of separated flow. Measured quantities include surface static pressure and flowfield Pitot pressures. Pitot profiles in the plane of symmetry through the interaction region are shown for various deflection angles. Oil flow visualization and the results of a trace gas streamline tracking technique are also presented.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2634
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).
    Keywords: Launch Vehicles and Launch Operations
    Type: MSFC-826 , Joint Army-Navy-NASA-Air Force (JANNAF) Conference; May 12, 2008 - May 16, 2008; Massachusetts; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.
    Keywords: Launch Vehicles and Launch Operations
    Type: JANNAF 2008; May 12, 2008 - May 16, 2008; Newton, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Ares I-X will be NASA's first test flight for a new human-rated launch vehicle since 1981, and the team is well on its way toward completing the vehicle's design and hardware fabrication for an April 2009 launch. This uncrewed suborbital development test flight gives NASA its first opportunities to: gather critical data about the flight dynamics of the integrated launch vehicle; understand how to control its roll during flight; better characterize the stage separation environments during future flight; and demonstrate the first stage recovery system. The Ares I-X Flight Test Vehicle (FTV) incorporates a mix of flight and mockup hardware. It is powered by a four-segment solid rocket booster, and will be modified to include a fifth, spacer segment; the upper stage, Orion crew exploration vehicle, and launch abort system are simulator hardware to make the FTV aerodynamically similar to the same size, shape, and weight of Ares I. The Ares IX first stage includes an existing Shuttle solid rocket motor and thrust vector control system controlled by an Ascent Thrust Vector Controller (ATVC) designed and built by Honeywell International. The avionics system will be tested in a dedicated System Integration Laboratory located at Lockheed Martin Space Systems (LMSS) in Denver, Colorado. The Upper Stage Simulator (USS) is made up of cylindrical segments that will be stacked and integrated at Kennedy Space Center (KSC) for launch. Glenn Research Center is already building these segments, along with their internal access structures. The active Roll Control System (RoCS) includes two thruster units harvested from Peacekeeper missiles. Duty cycle testing for RoCS was conducted, and fuel tanking and detanking tests will occur at KSC in early 2008. This important flight will provide valuable experience for the ground operations team in integrating, stacking, and launching Ares I. Data from Ares I-X will ensure the safety and reliability of America's newest launch vehicle.
    Keywords: Launch Vehicles and Launch Operations
    Type: Joint Army-Navy-NASA-Air Force (JANNAF)Conference; May 12, 2008 - May 16, 2008; Massachusetts; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Results of an experimental investigation of a symmetric crossing shock/turbulent boundary layer interaction are presented for a Mach number of 3.44 and deflection angles of 2, 6, 8, and 9 degrees. The interaction strengths vary from weak to strong enough to cause a large region of separated flow. Measured quantities include surface static pressure (both steady and unsteady) and flowfield Pitot pressures. Pitot profiles in the plane of symmetry through the interaction region are shown for various deflection angles. Oil flow visualization and the results of a trace gas streamline tracking technique are also presented.
    Keywords: AERODYNAMICS
    Type: NASA-TM-106086 , E-7716 , NAS 1.15:106086 , AIAA PAPER 92-2634 , AIAA Applied Aerodynamics Conference; Jun 22, 1992 - Jun 24, 1992; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-107687 , NAS 1.15:107687 , ATCOM-TR-92-B-015 , ASME Winter Annual Meeting: Symposium on Reliability Technology; Nov 08, 1992 - Nov 13, 1992; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A finite element solution of the unsteady Euler equations is presented and demonstrated for 2D airfoil configurations oscillating in transonic flows. Computations are performed by spatially discretizing the conservation equations using the Galerkin weighted residual method and then employing a multistage Runge-Kutta scheme to march forward in time. A mesh deformation scheme has been developed to efficiently move interior points in a smooth fashion as the airfoil undergoes rigid body pitch and plunge motion. Both steady and unsteady results are presented, and a comparison is made with solutions obtained using finite-volume techniques. The effects of using either a lumped or consistent mass matrix are presented; the finite element method provides an accurate solution for unsteady transonic flows about isolated airfoils.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2504 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 13, 1992 - Apr 15, 1992; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...