ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-01
    Print ISSN: 0376-0421
    Electronic ISSN: 1873-1724
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: In transonic flutter problems where shock motion plays an important part, it is believed that accurate predictions of the flutter boundaries will require the use of codes based on the Euler equations. Only Euler codes can obtain the correct shock location and shock strength, and the crucially important shock excursion amplitude and phase lag. The present study is based on the finite volume scheme developed by Jameson and Venkatakrishnan for the 2-D unsteady Euler equations. The equations are solved in integral form on a moving grid. The variable are pressure, density, Cartesian velocity components, and total energy.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 2; p 477-491
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: In the present paper, Euler calculations of unsteady transonic flow in cascades are presented. A finite volume scheme is used to discretize the equations, which are implemented on a blade-fitted deformable mesh. The space-discretized equations are integrated forward in time using a multistage Runge-Kutta scheme. Adaptive dissipation terms of the type proposed by Jameson and Baker are added to capture shocks and to suppress nonphysical oscillations. Phase-shifted boundary conditions are used to reduce the computational domain to a single reference passage. No assumptions of small amplitudes or small flow deflections are made. Thus, the present code makes it possible to carry out aeroelastic calculations for cases where the shock strengths and oscillation amplitudes exceed the inherent limitations of potential flow codes.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: An overview is given of aeroelastic problems in turbomachines, emphasizing recent research. Unsteady flow in cascade and turbomachinery rotors is discussed, including supersonic and transonic linearized potential flow and nonlinear flow models. Computational and modeling aspects of the flutter of fan and compressor blades are examined. The correlation of the findings with experimental data is considered. Future directions in turbomachinery aeroelasticity are addressed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: In: Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity (A94-12676 02-39); p. 241-297.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.
    Keywords: Aircraft Stability and Control
    Type: Fluid-Structure Interaction and Aeroelasticity; Nov 11, 1994; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A computational study of inviscid, transonic aileron and trailing-edge buzz instabilities is presented. A mixed Eulerian-Lagrangian formulation is used to model the fluid-structure system and to obtain a system of space-discretized equations that is time-marched to simulate the aeroelastic behavior of the wing-aileron system. Results obtained suggest that shock-induced separation may not be an essential driving force behind all buzz phenomena. Several examples are shown where the shock motion interacts with the aileron motion to extract energy from the flow. If the trailing-edge region is sufficiently flexible and the shocks are at the trailing edge, a trailing-edge buzz instability appears possible.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 93-1479 , ; 13 p.|AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference, 34th and AIAA and ASME, Adaptive Structures Forum; Apr 19, 1993 - Apr 22, 1993; La Jolla, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: FEM is here used to ascertain the stability and aeroelastic response of thin, 2D panels subjected to Mach 0.8-2.5 flows. In the absence of shocks, it is found that the Euler equations used to represent the unsteady flowfield dynamics predict response behaviors resembling those obtained via potential flow methods. Where shocks do play a significant role in the overall motion of the panel, divergence and limit cycle flutter are observed. In the Mach 1.4-1.5 range, flutter involved the higher modes of the panel, tending toward possible chaotic motion.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 93-1476 , ; 15 p.|AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference, 34th and AIAA and ASME, Adaptive Structures Forum; Apr 19, 1993 - Apr 22, 1993; La Jolla, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A computational study of the influence of shock motion on flutter and divergence in transonic flow is presented. The numerical scheme models the entire fluid-structure system as a single continuum dynamics problem, by using a mixed Eulerian-Lagrangian formulation. No assumptions of small displacements are made, but the effect of viscosity is neglected. The results from this study indicate that the shock dynamics gives rise to limit cycles and highly nonlinear aeroelastic phenomena, such as weak divergence and flutter-divergence interactions. Although the shocks typically are destabilizing at the linear flutter boundary, they often have a strongly stabilizing effect for moderate-amplitude motions. The shocks are thus capable of quenching an emerging bending-torsion flutter motion and turning it into limit cycle flutter. The usefulness of classical flutter and divergence boundary diagrams is severely limited in transonic flow, because much of the global dynamic stability information is lost in such a presentation.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2121 , AIAA Dynamics Specialists Conference; Apr 16, 1992 - Apr 17, 1992; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A Galerkin finite element procedure incorporating an explicit Runge-Kutta time-stepping scheme has been developed in this work to solve unsteady transonic flow in cascades. The computational domain is discretized by a globally unstructured but locally structured blade-fitted deformable mesh. The Galerkin approximation is applied to the unsteady Euler equations based on a mixed Eulerian-Lagrangian description. The semi-discretized equations are integrated forward in time using a multistage Runge-Kutta scheme. An artificial dissipation operator of the type proposed by Jameson is adapted in the current scheme to capture shocks and suppress nonphysical oscillations. Phase-shifted boundary conditions are used to reduce the computational domain to a single reference passage. Results for both steady and unsteady transonic flows through cascades are presented and compared to existing finite volume solutions.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2120 , AIAA Dynamics Specialists Conference; Apr 16, 1992 - Apr 17, 1992; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A finite element solution of the unsteady Euler equations is presented and demonstrated for 2D airfoil configurations oscillating in transonic flows. Computations are performed by spatially discretizing the conservation equations using the Galerkin weighted residual method and then employing a multistage Runge-Kutta scheme to march forward in time. A mesh deformation scheme has been developed to efficiently move interior points in a smooth fashion as the airfoil undergoes rigid body pitch and plunge motion. Both steady and unsteady results are presented, and a comparison is made with solutions obtained using finite-volume techniques. The effects of using either a lumped or consistent mass matrix are presented; the finite element method provides an accurate solution for unsteady transonic flows about isolated airfoils.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2504 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 13, 1992 - Apr 15, 1992; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...