ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-03-29
    Description: Cloned integrin alpha 2 subunit complementary DNA was expressed on human rhabdomyosarcoma (RD) cells to give a functional VLA-2 (alpha 2 beta 1) adhesion receptor. The VLA-2-positive RDA2 cells not only showed increased adhesion to collagen and laminin in vitro, but also formed substantially more metastatic tumor colonies in nude mice after either intravenous or subcutaneous injection. These results show that a specific adhesion receptor (VLA-2) can markedly enhance both experimental and spontaneous metastasis. In contrast to the metastasis results, there was no difference in either the in vitro growth rate or apparent in vivo tumorigenicity of RD and RDA2 cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, B M -- Matsuura, N -- Takada, Y -- Zetter, B R -- Hemler, M E -- CA 37393/CA/NCI NIH HHS/ -- GM 38903/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 29;251(5001):1600-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2011740" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Adhesion ; Cell Line ; Collagen ; Fibronectins ; Humans ; Kinetics ; Laminin ; Lung Neoplasms/pathology/secondary ; Mice ; Mice, Nude ; Neoplasm Metastasis ; Neoplasm Transplantation ; Receptors, Very Late Antigen/genetics/*physiology ; Rhabdomyosarcoma/*pathology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-08-02
    Description: Modulation of the activity of potassium and other ion channels is an essential feature of nervous system function. The open probability of a large conductance Ca(2+)-activated K+ channel from rat brain, incorporated into planar lipid bilayers, is increased by the addition of adenosine triphosphate (ATP) to the cytoplasmic side of the channel. This modulation takes place without the addition of protein kinase, requires Mg2+, and is mimicked by an ATP analog that serves as a substrate for protein kinases but not by a nonhydrolyzable ATP analog. Addition of protein phosphatase 1 reverses the modulation by MgATP. Thus, there may be an endogenous protein kinase activity firmly associated with this K+ channel. Some ion channels may exist in a complex that contains regulatory protein kinases and phosphatases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, S K -- Reinhart, P H -- Martin, B L -- Brautigan, D -- Levitan, I B -- DK31374/DK/NIDDK NIH HHS/ -- NS17910/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 2;253(5019):560-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1857986" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Brain/*physiology ; Calcium/*pharmacology ; Kinetics ; Lipid Bilayers ; Potassium Channels/drug effects/metabolism/*physiology ; Protein Kinases/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-06-21
    Description: Basic fibroblast growth factor (bFGF) binds to heparan sulfate proteoglycans at the cell surface and to receptors with tyrosine kinase activity. Prevention of binding between cell surface heparan sulfate and bFGF (i) substantially reduces binding of fibroblast growth factor to its cell-surface receptors, (ii) blocks the ability of bFGF to support the growth of Swiss 3T3 fibroblasts, and (iii) induces terminal differentiation of MM14 skeletal muscle cells, which is normally repressed by fibroblast growth factor. These results indicate that cell surface heparan sulfate is directly involved in bFGF cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rapraeger, A C -- Krufka, A -- Olwin, B B -- 5T32H007118/PHS HHS/ -- AR39467/AR/NIAMS NIH HHS/ -- HD21881/HD/NICHD NIH HHS/ -- R01 AR039467/AR/NIAMS NIH HHS/ -- R01 HD021881/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Wisconsin, Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1646484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Line ; Chlorates/pharmacology ; Fibroblast Growth Factor 2/*metabolism ; Fibroblasts/*cytology ; Heparitin Sulfate/*physiology ; In Vitro Techniques ; Mice ; Muscles/*cytology ; Polysaccharide-Lyases/pharmacology ; Protein Binding ; Receptors, Cell Surface/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-11-08
    Description: Humoral immunity is important for protection against viral infection and neutralization of extracellular virus, but clearance of virus from infected tissues is thought to be mediated solely by cellular immunity. However, in a SCID mouse model of persistent alphavirus encephalomyelitis, adoptive transfer of hyperimmune serum resulted in clearance of infectious virus and viral RNA from the nervous system, whereas adoptive transfer of sensitized T lymphocytes had no effect on viral replication. Three monoclonal antibodies to two different epitopes on the E2 envelope glycoprotein mediated viral clearance. Treatment of alphavirus-infected primary cultured rat neurons with these monoclonal antibodies to E2 resulted in decreased viral protein synthesis, followed by gradual termination of mature infectious virion production. Thus, antibody can mediate clearance of alphavirus infection from neurons by restricting viral gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levine, B -- Hardwick, J M -- Trapp, B D -- Crawford, T O -- Bollinger, R C -- Griffin, D E -- NS29234/NS/NINDS NIH HHS/ -- T32-NS-07000/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):856-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658936" target="_blank"〉PubMed〈/a〉
    Keywords: Alphavirus/immunology/isolation & purification/*physiology ; Animals ; Antibodies, Monoclonal/*therapeutic use ; Central Nervous System/immunology/*microbiology ; Encephalomyelitis/*immunology/microbiology/therapy ; *Immunotherapy, Adoptive ; Mice ; Mice, Inbred Strains ; Mice, SCID ; Neurons/immunology/*microbiology ; RNA, Viral/isolation & purification ; T-Lymphocytes/*immunology ; Togaviridae Infections/*immunology/therapy ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-03-15
    Description: Recent studies have suggested the existence of a tumor suppressor gene located at chromosome region 5q21. DNA probes from this region were used to study a panel of sporadic colorectal carcinomas. One of these probes, cosmid 5.71, detected a somatically rearranged restriction fragment in the DNA from a single tumor. Further analysis of the 5.71 cosmid revealed two regions that were highly conserved in rodent DNA. These sequences were used to identify a gene, MCC (mutated in colorectal cancer), which encodes an 829-amino acid protein with a short region of similarity to the G protein-coupled m3 muscarinic acetylcholine receptor. The rearrangement in the tumor disrupted the coding region of the MCC gene. Moreover, two colorectal tumors were found with somatically acquired point mutations in MCC that resulted in amino acid substitutions. MCC is thus a candidate for the putative colorectal tumor suppressor gene located at 5q21. Further studies will be required to determine whether the gene is mutated in other sporadic tumors or in the germ line of patients with an inherited predisposition to colonic tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinzler, K W -- Nilbert, M C -- Vogelstein, B -- Bryan, T M -- Levy, D B -- Smith, K J -- Preisinger, A C -- Hamilton, S R -- Hedge, P -- Markham, A -- 6M 07184/PHS HHS/ -- CA 06973/CA/NCI NIH HHS/ -- CA 09243/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Mar 15;251(4999):1366-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, Johns Hopkins Oncology Center, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848370" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Amino Acid Sequence ; Animals ; Base Sequence ; *Chromosomes, Human, Pair 5 ; Colorectal Neoplasms/*genetics ; Exons ; GTP-Binding Proteins/metabolism ; Gene Expression ; *Genes, Tumor Suppressor ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotides/chemistry ; Polymerase Chain Reaction ; Proteins/*genetics/metabolism ; Rats ; Sequence Homology, Nucleic Acid ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-12-20
    Description: Dimerization among transcription factors has become a recurrent theme in the regulation of eukaryotic gene expression. Hepatocyte nuclear factor-1 alpha (HNF-1 alpha) is a homeodomain-containing protein that functions as a dimer. A dimerization cofactor of HNF-1 alpha (DCoH) was identified that displayed a restricted tissue distribution and did not bind to DNA, but, rather, selectively stabilized HNF-1 alpha dimers. The formation of a stable tetrameric DCoH-HNF-1 alpha complex, which required the dimerization domain of HNF-1 alpha, did not change the DNA binding characteristics of HNF-1 alpha, but enhanced its transcriptional activity. However, DCoH did not confer transcriptional activation to the GAL4 DNA binding domain. These results indicate that DCoH regulates formation of transcriptionally active tetrameric complexes and may contribute to the developmental specificity of the complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendel, D B -- Khavari, P A -- Conley, P B -- Graves, M K -- Hansen, L P -- Admon, A -- Crabtree, G R -- CA 09302/CA/NCI NIH HHS/ -- HD 07201/HD/NICHD NIH HHS/ -- HL 33942/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1762-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763325" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Nucleus/physiology ; Chromosome Deletion ; DNA-Binding Proteins/*metabolism ; Gene Library ; Hepatocyte Nuclear Factor 1 ; Hepatocyte Nuclear Factor 1-alpha ; Hepatocyte Nuclear Factor 1-beta ; Humans ; *Hydro-Lyases ; Liver/physiology ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; *Nuclear Proteins ; Protein Biosynthesis ; RNA, Messenger/genetics ; Rabbits ; Rats ; Reticulocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-05-31
    Description: Many candidate antigens of malaria vaccines have limited immunological recognition. One exception is Pfs25, a cysteine-rich, 25-kilodalton sexual stage surface protein of Plasmodium falciparum. Pfs25 is a target of monoclonal antibodies that block transmission of malaria from vertebrate host to mosquito vector. The surface of mammalian cells infected with a recombinant vaccinia virus that expressed Pfs25 specifically bound transmission-blocking monoclonal antibodies. Furthermore, major histocompatibility complex-disparate congenic mouse strains immunized with recombinant Pfs25 elicited transmission-blocking antibodies, demonstrating that the capacity to develop transmission-blocking antibodies is not genetically restricted in mice. Live recombinant viruses may provide an inexpensive, easily administered alternative to subunit vaccines prepared from purified recombinant proteins to block transmission of malaria in developing countries.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaslow, D C -- Isaacs, S N -- Quakyi, I A -- Gwadz, R W -- Moss, B -- Keister, D B -- New York, N.Y. -- Science. 1991 May 31;252(5010):1310-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaria Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925544" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/analysis/immunology ; Antibodies, Protozoan/*immunology ; Antigens, Protozoan ; Immunization ; Malaria, Falciparum/*prevention & control ; Mice ; Plasmodium falciparum/*immunology ; Protozoan Proteins/genetics/*immunology ; Recombinant Proteins/immunology ; Transfection ; Vaccinia virus/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-05-03
    Description: The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Lu, M L -- Lo, S H -- Lin, S -- Butler, J A -- Druker, B J -- Roberts, T M -- An, Q -- Chen, L B -- GM 22289/GM/NIGMS NIH HHS/ -- GM 38318/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1708917" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Chick Embryo ; Cloning, Molecular ; Cytoskeletal Proteins/*chemistry/genetics/metabolism ; DNA/genetics ; Fluorescent Antibody Technique ; Immunoblotting ; *Microfilament Proteins ; Molecular Sequence Data ; Peptide Fragments/genetics ; Phosphotyrosine ; Protein-Tyrosine Kinases/genetics ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-03-08
    Description: The two mouse genes, En-1 and En-2, that are homologs of the Drosophila segmentation gene engrailed, show overlapping spatially restricted patterns of expression in the neural tube during embryogenesis, suggestive of a role in regional specification. Mice homozygous for a targeted mutation that deletes the homeobox were viable and showed no obvious defects in embryonic development. This may be due to functional redundancy of En-2 and the related En-1 gene product during embryogenesis. Consistent with this hypothesis, the mutant mice showed abnormal foliation in the adult cerebellum, where En-2, and not En-1, is normally expressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joyner, A L -- Herrup, K -- Auerbach, B A -- Davis, C A -- Rossant, J -- HD25334/HD/NICHD NIH HHS/ -- NS18381/NS/NINDS NIH HHS/ -- NS20591/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1239-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1672471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst ; Cell Line ; Cerebellum/*anatomy & histology/embryology/pathology ; Chimera ; *Chromosome Deletion ; Female ; *Genes, Homeobox ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nervous System/embryology ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-11-08
    Description: Voltage-gated sodium channels are responsible for generation of action potentials in excitable cells. Activation of protein kinase C slows inactivation of sodium channels and reduces peak sodium currents. Phosphorylation of a single residue, serine 1506, that is located in the conserved intracellular loop between domains III and IV and is involved in inactivation of the sodium channel, is required for both modulatory effects. Mutant sodium channels lacking this phosphorylation site have normal functional properties in unstimulated cells but do not respond to activation of protein kinase C. Phosphorylation of this conserved site in sodium channel alpha subunits may regulate electrical activity in a wide range of excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- GM07270/GM/NIGMS NIH HHS/ -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):866-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/physiology ; Cells, Cultured ; Membrane Potentials ; Models, Structural ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinase C/*metabolism ; Sodium Channels/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...