ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (24)
  • American Association for the Advancement of Science (AAAS)  (24)
  • Springer Nature
  • 2000-2004
  • 1995-1999  (21)
  • 1980-1984  (3)
  • 1940-1944
  • 1995  (21)
  • 1980  (3)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (24)
  • Springer Nature
Years
  • 2000-2004
  • 1995-1999  (21)
  • 1980-1984  (3)
  • 1940-1944
Year
  • 1
    Publication Date: 1995-07-07
    Description: The crystal structure of an aminimide analog of a dipeptide inhibitor of porcine pancreatic elastase bound to its target serine protease has been solved. The peptidomimetic molecule binds in the same fashion as the class of dipeptides from which it was derived, making similar interactions with the subsites on the elastase surface. Because aminimides are readily synthesized from a wide variety of starting materials, they form the basis for a combinatorial chemistry approach to rational drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peisach, E -- Casebier, D -- Gallion, S L -- Furth, P -- Petsko, G A -- Hogan, J C Jr -- Ringe, D -- T32GMO7596/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Jul 7;269(5220):66-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biophysics, Brandeis University, Waltham, MA 02254, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7604279" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anilides/chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Dipeptides/chemistry/*metabolism ; Hydrazines/chemistry/*metabolism ; Hydrogen Bonding ; Molecular Sequence Data ; Pancreatic Elastase/*antagonists & inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-06-02
    Description: Site-directed mutagenesis and Laue diffraction data to 2.5 A resolution were used to solve the structures of two sequential intermediates formed during the catalytic actions of isocitrate dehydrogenase. Both intermediates are distinct from the enzyme-substrate and enzyme-product complexes. Mutation of key catalytic residues changed the rate determining steps so that protein and substrate intermediates within the overall reaction pathway could be visualized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bolduc, J M -- Dyer, D H -- Scott, W G -- Singer, P -- Sweet, R M -- Koshland, D E Jr -- Stoddard, B L -- GM49857/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 2;268(5215):1312-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Program in Structural Biology, Seattle, WA 98104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7761851" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Computer Graphics ; *Crystallography, X-Ray ; Isocitrate Dehydrogenase/*chemistry/genetics/metabolism ; Isocitrates/metabolism ; Kinetics ; *Mutagenesis, Site-Directed ; NADP/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-04-28
    Description: DCoH, the dimerization cofactor of hepatocyte nuclear factor-1, stimulates gene expression by associating with specific DNA binding proteins and also catalyzes the dehydration of the biopterin cofactor of phenylalanine hydroxylase. The x-ray crystal structure determined at 3 angstrom resolution reveals that DCoH forms a tetramer containing two saddle-shaped grooves that comprise likely macromolecule binding sites. Two equivalent enzyme active sites flank each saddle, suggesting that there is a spatial connection between the catalytic and binding activities. Structural similarities between the DCoH fold and nucleic acid-binding proteins argue that the saddle motif has evolved to bind diverse ligands or that DCoH unexpectedly may bind nucleic acids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Endrizzi, J A -- Cronk, J D -- Wang, W -- Crabtree, G R -- Alber, T -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):556-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Gene Expression Regulation ; Hydro-Lyases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-03-10
    Description: The crystal structure of the tungsten-containing aldehyde ferredoxin oxidoreductase (AOR) from Pyrococcus furiosus, a hyperthermophilic archaeon (formerly archaebacterium) that grows optimally at 100 degrees C, has been determined at 2.3 angstrom resolution by means of multiple isomorphous replacement and multiple crystal form averaging. AOR consists of two identical subunits, each containing an Fe4S4 cluster and a molybdopterin-based tungsten cofactor that is analogous to the molybdenum cofactor found in a large class of oxotransferases. Whereas the general features of the tungsten coordination in this cofactor were consistent with a previously proposed structure, each AOR subunit unexpectedly contained two molybdopterin molecules that coordinate a tungsten by a total of four sulfur ligands, and the pterin system was modified by an intramolecular cyclization that generated a three-ringed structure. In comparison to other proteins, the hyperthermophilic enzyme AOR has a relatively small solvent-exposed surface area, and a relatively large number of both ion pairs and buried atoms. These properties may contribute to the extreme thermostability of this enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, M K -- Mukund, S -- Kletzin, A -- Adams, M W -- Rees, D C -- 1F32 GM15006/GM/NIGMS NIH HHS/ -- GM50775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 10;267(5203):1463-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Pasadena, CA 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7878465" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/*chemistry/metabolism ; Amino Acid Sequence ; Archaea/*enzymology ; Binding Sites ; *Coenzymes ; Computer Graphics ; Crystallography, X-Ray ; Enzyme Stability ; Ferrous Compounds ; Metalloproteins/analysis/chemistry ; Models, Molecular ; Molecular Sequence Data ; Organometallic Compounds/analysis/*chemistry ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Secondary ; Pteridines/analysis/chemistry ; Pterins/analysis/*chemistry ; Surface Properties ; Temperature ; Tungsten/analysis/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-04-21
    Description: Fibroblast growth factors (FGFs) require a polysaccharide cofactor, heparin or heparan sulfate (HS), for receptor binding and activation. To probe the molecular mechanism by which heparin or HS (heparin/HS) activates FGF, small nonsulfated oligosaccharides found within heparin/HS were assayed for activity. These synthetic and isomerically pure compounds can activate the FGF signaling pathway. The crystal structures of complexes between FGF and these heparin/HS oligosaccharides reveal several binding sites on FGF and constrain possible mechanisms by which heparin/HS can activate the FGF receptor. These studies establish a framework for the molecular design of compounds capable of modulating FGF activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ornitz, D M -- Herr, A B -- Nilsson, M -- Westman, J -- Svahn, C M -- Waksman, G -- CA60673/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7536345" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carbohydrate Sequence ; Cell Line ; Crystallization ; Fibroblast Growth Factor 1/chemistry/*metabolism ; Fibroblast Growth Factor 2/*metabolism ; Heparin/metabolism/*pharmacology ; Heparitin Sulfate/chemistry/*pharmacology ; Mitogens/pharmacology ; Molecular Sequence Data ; Oligosaccharides/chemistry/metabolism/*pharmacology ; Receptors, Fibroblast Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-09-22
    Description: The behavioral and cognitive effects of nicotine suggest that nicotinic acetylcholine receptors (nAChRs) participate in central nervous system (CNS) function. Although nAChR subunit messenger RNA (mRNA) and nicotine binding sites are common in the brain, there is little evidence for synapses mediated by nAChRs in the CNS. To test whether, CNS nAChRs might modify rather than mediate transmission, the regulation of excitatory synaptic transmission by these receptors was examined. Nanomolar concentrations of nicotine enhanced both glutamatergic and cholinergic synaptic transmission by activation of presynaptic nAChRs that increased presynaptic [Ca2]i. Pharmacological and subunit deletion experiments reveal that these presynaptic nAChRs include the alpha 7 subunit. These findings reveal that CNS nAChRs enhance fast excitatory transmission, providing a likely mechanism for the complex behavioral effects of nicotine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGehee, D S -- Heath, M J -- Gelber, S -- Devay, P -- Role, L W -- NS09395/NS/NINDS NIH HHS/ -- NS22061/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 22;269(5231):1692-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Brain/drug effects/*physiology ; Bungarotoxins/metabolism/pharmacology ; Calcium/physiology ; Chick Embryo ; Culture Techniques ; Ganglia, Sympathetic/drug effects/physiology ; Glutamic Acid/metabolism ; Molecular Sequence Data ; Nicotine/metabolism/*pharmacology ; Nicotinic Agonists/metabolism/*pharmacology ; Presynaptic Terminals/chemistry/drug effects/*physiology ; Receptors, Nicotinic/analysis/*physiology ; Synapses/drug effects/physiology ; Synaptic Transmission/*drug effects ; Thalamic Nuclei/drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-12-15
    Description: For almost 200 years inert antigens have been used for initiating the process of immunization. A procedure is now described in which the antigen used is so highly reactive that a chemical reaction occurs in the antibody combining site during immunization. An organophosphorus diester hapten was used to illustrate this concept coined "reactive immunization." The organophosphonate recruited chemical potential from the immune response that resembled the way these compounds recruit the catalytic power of the serine hydrolases. During this recruitment, a large proportion of the isolated antibodies catalyzed the formation and cleavage of phosphonylated intermediates and subsequent ester hydrolysis. Reactive immunization can augment traditional immunization and enhance the scope of catalytic antibody chemistry. Among the compounds anticipated to be effective are those that contain appropriate reactive functionalities or those that are latently reactive, as in the mechanism-based inhibitors of enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wirsching, P -- Ashley, J A -- Lo, C H -- Janda, K D -- Lerner, R A -- DA08590/DA/NIDA NIH HHS/ -- GM48351/GM/NIGMS NIH HHS/ -- P01 CA27489-16/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1775-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525366" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/*chemistry/immunology ; Antibodies, Monoclonal/chemistry/immunology ; Antigen-Antibody Reactions ; Antigens/*chemistry/immunology ; Binding Sites ; Catalysis ; Cattle ; Esters/chemistry/immunology ; Haptens/chemistry/immunology ; Immunization/*methods ; Kinetics ; Mice ; Organophosphonates/chemistry/*immunology ; Thermodynamics ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-11-10
    Description: Polychlorinated biphenyls (PCBs) typify a class of stable aromatic pollutants that are targeted by bioremediation strategies. In the aerobic degradation of biphenyl by bacteria, the key step of ring cleavage is catalyzed by an Fe(II)-dependent extradiol dioxygenase. The crystal structure of 2,3-dihydroxybiphenyl 1,2-dioxygenase from a PCB-degrading strain of Pseudomonas cepacia has been determined at 1.9 angstrom resolution. The monomer comprises amino- and carboxyl-terminal domains. Structural homology between and within the domains reveals evolutionary relationships within the extradiol dioxygenase family. The iron atom has five ligands in square pyramidal geometry: one glutamate and two histidine side chains, and two water molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, S -- Eltis, L D -- Timmis, K N -- Muchmore, S W -- Bolin, J T -- GM 52831/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 10;270(5238):976-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481800" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biodegradation, Environmental ; Crystallography, X-Ray ; *Dioxygenases ; Evolution, Molecular ; Ferrous Compounds/chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxygen/chemistry/metabolism ; Oxygenases/*chemistry/metabolism ; Polychlorinated Biphenyls/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Pseudomonas/*enzymology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-09-01
    Description: The adhesion domain of human CD2 bears a single N-linked carbohydrate. The solution structure of a fragment of CD2 containing the covalently bound high-mannose N-glycan [-(N-acetylglucosamine)2-(mannose)5-8] was solved by nuclear magnetic resonance. The stem and two of three branches of the carbohydrate structure are well defined and the mobility of proximal glycan residues is restricted. Mutagenesis of all residues in the vicinity of the glycan suggests that the glycan is not a component of the CD2-CD58 interface; rather, the carbohydrate stabilizes the protein fold by counterbalancing an unfavorable clustering of five positive charges centered about lysine-61 of CD2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyss, D F -- Choi, J S -- Li, J -- Knoppers, M H -- Willis, K J -- Arulanandam, A R -- Smolyar, A -- Reinherz, E L -- Wagner, G -- New York, N.Y. -- Science. 1995 Sep 1;269(5228):1273-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7544493" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry ; Amino Acid Sequence ; Animals ; Antigens, CD/metabolism ; Antigens, CD2/*chemistry/metabolism ; Antigens, CD58 ; Binding Sites ; CHO Cells ; Carbohydrate Conformation ; Carbohydrate Sequence ; Cell Adhesion ; Cricetinae ; Glycosylation ; Humans ; Magnetic Resonance Spectroscopy ; Membrane Glycoproteins/metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligosaccharides/*chemistry ; *Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-08-25
    Description: Vulval induction during Caenorhabditis elegans development is mediated by LET-23, a homolog of the mammalian epidermal growth factor receptor tyrosine kinase. The sli-1 gene is a negative regulator of LET-23 and is shown here to encode a protein similar to c-Cbl, a mammalian proto-oncoprotein. SLI-1 and c-Cbl share approximately 55 percent amino acid identity over a stretch of 390 residues, which includes a C3HC4 zinc-binding motif known as the RING finger, and multiple consensus binding sites for Src homology 3 (SH3) domains. SLI-1 and c-Cbl may define a new class of proteins that modify receptor tyrosine kinase-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, C H -- Lee, J -- Jongeward, G D -- Sternberg, P W -- New York, N.Y. -- Science. 1995 Aug 25;269(5227):1102-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652556" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; *Caenorhabditis elegans Proteins ; Conserved Sequence ; DNA, Complementary/genetics ; Female ; *Genes, Helminth ; *Genes, Regulator ; Helminth Proteins/chemistry/*genetics/metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Proto-Oncogene Proteins/chemistry/*genetics ; Proto-Oncogene Proteins c-cbl ; Receptor, Epidermal Growth Factor/metabolism ; Sequence Alignment ; Signal Transduction ; *Ubiquitin-Protein Ligases ; Vulva/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...