ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • Latest Papers from Table of Contents or Articles in Press  (16)
  • Mutation  (11)
  • Models, Biological  (6)
  • Medicine  (16)
  • Geography
  • Mathematics
Collection
  • Articles  (16)
Source
  • Latest Papers from Table of Contents or Articles in Press  (16)
Topic
  • 1
    Publication Date: 2002-01-05
    Description: The Drosophila melanogaster fourth chromosome, believed to be nonrecombining and invariable, is a classic example of the effect of natural selection in eliminating genetic variation in linked loci. However, in a chromosome-wide assay of nucleotide variation in natural populations, we have observed a high level of polymorphism in a approximately 200-kilobase region and marked levels of polymorphism in several other fragments interspersed with regions of little variation, suggesting different evolutionary histories in different chromosomal domains. Statistical tests of neutral evolution showed that a few haplotypes predominate in the 200-kilobase polymorphic region. Finally, contrary to the expectation of no recombination, we identified six recombination events within the chromosome. Thus, positive Darwinian selection and recombination have affected the evolution of this chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wen -- Thornton, Kevin -- Berry, Andrew -- Long, Manyuan -- New York, N.Y. -- Science. 2002 Jan 4;295(5552):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, Committee on Genetics, University of Chicago, 1101 East 57 Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Chromosome Inversion ; Chromosomes/*genetics ; Drosophila Proteins/genetics ; Drosophila melanogaster/*genetics ; Evolution, Molecular ; *Genes, Insect ; *Genetic Variation ; Haplotypes ; Introns ; Linkage Disequilibrium ; Monte Carlo Method ; Mutation ; Nucleotides/genetics ; *Polymorphism, Genetic ; *Recombination, Genetic ; Selection, Genetic ; Sequence Analysis, DNA ; Trans-Activators/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-18
    Description: Cell divisions that produce progeny differing in their patterns of gene expression are key to the development of multicellular organisms. In the budding yeast Saccharomyces cerevisiae, mother cells but not daughter cells can switch mating type because they selectively express the HO endonuclease gene. This asymmetry is due to the preferential accumulation of an unstable transcriptional repressor protein, Ash1p, in daughter cell nuclei. Here it is shown that ASH1 messenger RNA (mRNA) preferentially accumulates in daughter cells by a process that is dependent on actin and myosin. A cis-acting element in the 3'-untranslated region of ASH1 mRNA is sufficient to localize a chimeric RNA to daughter cells. These results suggest that localization of mRNA may have been an early property of the eukaryotic lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, R M -- Singer, R H -- Meng, X -- Gonzalez, I -- Nasmyth, K -- Jansen, R P -- 7 F32 HD08088-02/HD/NICHD NIH HHS/ -- GM54887/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 18;277(5324):383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9219698" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics/*physiology ; Cell Cycle ; Cell Nucleus/metabolism ; *DNA-Binding Proteins ; Deoxyribonucleases, Type II Site-Specific/genetics ; Fungal Proteins/genetics ; Genes, Fungal ; Genes, Mating Type, Fungal ; In Situ Hybridization, Fluorescence ; Microtubules/physiology ; Mutation ; *Myosin Heavy Chains ; *Myosin Type V ; Myosins/genetics ; RNA, Fungal/genetics/*metabolism ; RNA, Messenger/genetics/*metabolism ; Repressor Proteins/biosynthesis/*genetics ; Saccharomyces cerevisiae/cytology/genetics/metabolism/*physiology ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/biosynthesis/*genetics ; Transformation, Genetic ; Tropomyosin/genetics/physiology ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-03
    Description: Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauwels, Laurens -- Barbero, Gemma Fernandez -- Geerinck, Jan -- Tilleman, Sofie -- Grunewald, Wim -- Perez, Amparo Cuellar -- Chico, Jose Manuel -- Bossche, Robin Vanden -- Sewell, Jared -- Gil, Eduardo -- Garcia-Casado, Gloria -- Witters, Erwin -- Inze, Dirk -- Long, Jeff A -- De Jaeger, Geert -- Solano, Roberto -- Goossens, Alain -- R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360743" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cyclopentanes/antagonists & inhibitors/*pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Oxylipins/antagonists & inhibitors/*pharmacology ; Plants, Genetically Modified ; Protein Binding ; Repressor Proteins/genetics/*metabolism ; Signal Transduction/*drug effects ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-20
    Description: Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891600/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891600/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Metcalf, C J E -- Graham, A L -- Huijben, S -- Barclay, V C -- Long, G H -- Grenfell, B T -- Read, A F -- Bjornstad, O N -- R01 GM089932/GM/NIGMS NIH HHS/ -- R01GM089932/GM/NIGMS NIH HHS/ -- R24 HD047879/HD/NICHD NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):984-8. doi: 10.1126/science.1204588.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, Oxford University, Oxford OX1 3PS, UK. charlotte.metcalf@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852493" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Animals ; Antibodies/immunology ; CD4-Positive T-Lymphocytes/immunology ; Erythrocyte Aging ; Erythrocyte Count ; Erythrocytes/*parasitology/physiology ; Host-Parasite Interactions ; Humans ; Immunity, Innate ; Interleukin-10/immunology/metabolism ; Malaria/blood/*immunology/*parasitology ; Mice ; Models, Biological ; Models, Statistical ; *Parasitemia/blood/immunology/parasitology ; Plasmodium chabaudi/immunology/*physiology ; Receptors, Interleukin-10/immunology ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-24
    Description: Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Emerson, J J -- Kaessmann, Henrik -- Betran, Esther -- Long, Manyuan -- GM-065429-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739461" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Chromosomes, Human/genetics ; Chromosomes, Human, X/*genetics ; Chromosomes, Mammalian/genetics ; Computational Biology ; Dosage Compensation, Genetic ; Female ; Gene Expression Profiling ; Genes, Duplicate ; Genetic Linkage ; Genome ; Genome, Human ; Humans ; Introns ; Male ; Mice ; Monte Carlo Method ; Mutation ; Oligonucleotide Array Sequence Analysis ; Ovary/metabolism ; Pseudogenes/*genetics ; *Recombination, Genetic ; Retroelements/*genetics ; Selection, Genetic ; Sex Characteristics ; Testis/metabolism ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-06-18
    Description: Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase. We show that NSP2-GFP expressed from a constitutive promoter is localized to the endoplasmic reticulum/nuclear envelope and relocalizes to the nucleus after Nod-factor elicitation. This work provides evidence that a GRAS protein transduces calcium signals in plants and provides a possible regulator of Nod-factor-inducible gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalo, Peter -- Gleason, Cynthia -- Edwards, Anne -- Marsh, John -- Mitra, Raka M -- Hirsch, Sibylle -- Jakab, Julia -- Sims, Sarah -- Long, Sharon R -- Rogers, Jane -- Kiss, Gyorgy B -- Downie, J Allan -- Oldroyd, Giles E D -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Disease and Stress Biology and Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961668" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Peas/genetics/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-07-09
    Description: Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Stephen B -- Campbell, Ernest B -- Mackinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):903-8. Epub 2005 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16002579" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Crystallography, X-Ray ; Electrochemistry ; Ion Channel Gating/physiology ; Membrane Potentials ; Models, Biological ; Models, Molecular ; Potassium Channels/*chemistry/*physiology ; Protein Conformation ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-07-01
    Description: Mathematical models predict that the future of the multidrug-resistant tuberculosis epidemic will depend on the fitness cost of drug resistance. We show that in laboratory-derived mutants of Mycobacterium tuberculosis, rifampin resistance is universally associated with a competitive fitness cost and that this cost is determined by the specific resistance mutation and strain genetic background. In contrast, we demonstrate that prolonged patient treatment can result in multidrug-resistant strains with no fitness defect and that strains with low- or no-cost resistance mutations are also the most frequent among clinical isolates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagneux, Sebastien -- Long, Clara Davis -- Small, Peter M -- Van, Tran -- Schoolnik, Gary K -- Bohannan, Brendan J M -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1944-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA. sgagneux@systemsbiology.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809538" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antibiotics, Antitubercular/*pharmacology/therapeutic use ; Bacterial Proteins/genetics ; DNA-Directed RNA Polymerases/genetics ; *Drug Resistance, Multiple, Bacterial ; Humans ; Models, Biological ; Mutation ; Mutation, Missense ; Mycobacterium tuberculosis/*drug effects/genetics/*growth & development ; Rifampin/*pharmacology/therapeutic use ; Tuberculosis, Multidrug-Resistant/drug therapy/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-06-10
    Description: The embryos of seed plants develop with an apical shoot pole and a basal root pole. In Arabidopsis, the topless-1 (tpl-1) mutation transforms the shoot pole into a second root pole. Here, we show that TPL resembles known transcriptional corepressors and that tpl-1 acts as a dominant negative mutation for multiple TPL-related proteins. Mutations in the putative coactivator HISTONE ACETYLTRANSFERASE GNAT SUPERFAMILY1 suppress the tpl-1 phenotype. Mutations in HISTONE DEACETYLASE19, a putative corepressor, increase the penetrance of tpl-1 and display similar apical defects. These data point to a transcriptional repression mechanism that prevents root formation in the shoot pole during Arabidopsis embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Jeff A -- Ohno, Carolyn -- Smith, Zachery R -- Meyerowitz, Elliot M -- GM072764/GM/NIGMS NIH HHS/ -- GM45697/GM/NIGMS NIH HHS/ -- R01 GM072764/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 9;312(5779):1520-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. long@salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763149" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*embryology/genetics ; Arabidopsis Proteins/genetics/*physiology ; Cell Polarity ; Chromosome Mapping ; Chromosomes, Plant ; Gene Expression Regulation, Plant ; Histone Deacetylases/genetics/physiology ; Mutation ; Plant Roots/embryology ; Plant Shoots/embryology ; Repressor Proteins/genetics/*physiology ; Seeds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...