ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21)
  • Articles: DFG German National Licenses  (12)
  • Latest Papers from Table of Contents or Articles in Press  (9)
  • Immunohistochemistry
  • Life and Medical Sciences
  • Mutation
  • Protein Structure, Secondary
  • 2010-2014  (9)
  • 1980-1984  (12)
Collection
  • Articles  (21)
Source
  • Articles: DFG German National Licenses  (12)
  • Latest Papers from Table of Contents or Articles in Press  (9)
Years
Year
  • 1
    Publication Date: 2010-10-12
    Description: Bacterial biofilms are structured multicellular communities involved in a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near surfaces is crucial for understanding the transition between planktonic and biofilm phenotypes. By translating microscopy movies into searchable databases of bacterial behavior, we identified fundamental type IV pili-driven mechanisms for Pseudomonas aeruginosa surface motility involved in distinct foraging strategies. Bacteria stood upright and "walked" with trajectories optimized for two-dimensional surface exploration. Vertical orientation facilitated surface detachment and could influence biofilm morphology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibiansky, Maxsim L -- Conrad, Jacinta C -- Jin, Fan -- Gordon, Vernita D -- Motto, Dominick A -- Mathewson, Margie A -- Stopka, Wiktor G -- Zelasko, Daria C -- Shrout, Joshua D -- Wong, Gerard C L -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):197. doi: 10.1126/science.1194238.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, California Nano Systems Institute,University of California, Los Angeles, CA 90024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929769" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Bacterial Adhesion ; *Biofilms ; Cell Division ; Databases, Factual ; Fimbriae, Bacterial/*physiology ; Microscopy ; Motion Pictures as Topic ; Movement ; Mutation ; Pseudomonas aeruginosa/genetics/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Heart, atrium ; Myoendocrine cells ; Cardiodilatin ; Peptide hormone ; Immunohistochemistry ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A peptide hormone was extracted from the porcine right atrium following a bioassay for differential vaso-relaxant effects on smooth muscle strips from aorta and renal and inferior mesenteric arteries. The isolation procedure included several steps of gel-permeation and ion-exchange chromatography, and high performance liquid chromatography. During the isolation procedure, other peptides of smaller molecular weight were also found, which, in relation to cardiodilatin-126 (CDD-126), are shorter at their N-terminal. Among these, CDD-88 has also been isolated and characterizied, and has been established as a prominent member of the cardiac hormone family. The N-terminal and C-terminal segments of the 126 amino acid-containing molecule were synthesized and used to raise region-specific antibodies. The natural peptide was then localized within myoendocrine cells of the right atrium where specific atrial granules are located. Renal effects of cardiodilation were studied in conscious dogs and showed strong diuretic and natriuretic activities. According to our functional studies, cardiodilatin-126 and cardiodilatin-88 possess qualities of a significant hormone family regarding the regulation of extracellular fluid volume and blood pressure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 221 (1982), S. 483-491 
    ISSN: 1432-0878
    Keywords: Glucagon ; Glicentin ; Human ; Colon ; Immunohistochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary An immunohistochemical study of glucagon and glicentin immunoreactive endocrine cells in the human colon epithelium was performed. Serial sections and qualitative analysis show a cell population containing both immunoreactivities. However, there is another cell population exhibiting only an immunoreactivity with glicentin. The exact distribution of these immunoreactive endocrine cells within the colon crypt segments is also analysed. The significance of these findings concerning the synthesis of glucagon and glicentin and their function is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 112 (1982), S. 307-315 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The Ca2+ activation mechanism of the longitudinal body wall muscles of Parastichopus californicus (sea cucumber) was studied using skinned muscle fiber bundles. Reversible phosphorylation of the myosin light chains correlated with Ca2+-activated tension and relaxation. Pretreatment of the skinned fibers with ATPγS and high Ca2+ (10-5M) resulted in irreversible thiophosphorylation of the myosin light chains and activation of a Ca2+ insensitive tension. In contrast, pretreatment with low Ca2+ (10-8M) and ATPγS results in no thiophosphorylation of the myosin light chains or irreversible activation of tension. These results are consistent with a Ca2+-sensitive myosin light chain kinase/phosphatase system being responsible for the activation of the muscle. Other agents known to have an effect upon the Ca2+-activated tension in skinned vertebrate smooth muscle fibers (trifluoperazine, catalytic subunit of the cyclic AMP-dependent protein kinase, and calmodulin) did not have an effect on myosin light chain phosphorylation or Ca2+-activated tension. These results suggest a different type of myosin light chain kinase than is found in vertebrate smooth muscle is responsible for the activation of parastichopus longitudinal body wall muscle.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 10 (1984), S. 31-44 
    ISSN: 0148-7280
    Keywords: subacrosomal space ; sperm ; murid rodents ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: This scanning and transmission electron microscopical study has been performed to determine the extent of the development of the subacrosomal space in the sperm head of various members of the subfamily, the Hydromyinae, which is a diverse group of murid rodents occurring in various habitats in Australia. Sperm of all species from the three tribes of Hydromyini, Uromyini, and Conilurini investigated in this study had a head with three hooks although their absolute and relative lengths varied markedly. The top hook was similar in structure to that present in many other murid rodents and had a typical pseudoperforatorium present. The two ventral hooks had nuclear material basally, apical to which a large extension of the subacrosomal space occurred. Studies of testicular sections showed that the ventral hooks were formed late in spermiogenesis largely after condensation of the nucleus during which time electron dense material accumulated within them. No structure homologous to these hooks has been found in sperm from any other mammalian group, but, as the three tribes of Hydromyinae probably diverged about 20 million years ago, the extension of the subacrosomal space presumably evolved prior to this date.
    Additional Material: 41 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-01
    Description: Lymphocytes egress from lymphoid organs in response to sphingosine-1-phosphate (S1P); minutes later they migrate from blood into tissue against the S1P gradient. The mechanisms facilitating cell movement against the gradient have not been defined. Here, we show that heterotrimeric guanine nucleotide-binding protein-coupled receptor kinase-2 (GRK2) functions in down-regulation of S1P receptor-1 (S1PR1) on blood-exposed lymphocytes. T and B cell movement from blood into lymph nodes is reduced in the absence of GRK2 but is restored in S1P-deficient mice. In the spleen, B cell movement between the blood-rich marginal zone and follicles is disrupted by GRK2 deficiency and by mutation of an S1PR1 desensitization motif. Moreover, delivery of systemic antigen into follicles is impaired. Thus, GRK2-dependent S1PR1 desensitization allows lymphocytes to escape circulatory fluids and migrate into lymphoid tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267326/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267326/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnon, Tal I -- Xu, Ying -- Lo, Charles -- Pham, Trung -- An, Jinping -- Coughlin, Shaun -- Dorn, Gerald W -- Cyster, Jason G -- AI74847/AI/NIAID NIH HHS/ -- R01 AI074847/AI/NIAID NIH HHS/ -- R01 AI074847-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1898-903. doi: 10.1126/science.1208248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960637" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Antibody Complex/immunology ; B-Lymphocytes/immunology/*physiology ; Blood ; Cell Movement ; Chemokines/physiology ; Chemotaxis, Leukocyte ; Down-Regulation ; G-Protein-Coupled Receptor Kinase 2/*metabolism ; Ligands ; Lymph Nodes/cytology ; Lysophospholipids/metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Receptors, Lysosphingolipid/genetics/*metabolism ; Signal Transduction ; Sphingosine/analogs & derivatives/metabolism ; Spleen/cytology/immunology ; T-Lymphocytes/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-23
    Description: Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Jiang, Yi -- Ma, Jinming -- Wu, Huixian -- Wacker, Daniel -- Katritch, Vsevolod -- Han, Gye Won -- Liu, Wei -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Gao, Xiang -- Zhou, X Edward -- Melcher, Karsten -- Zhang, Chenghai -- Bai, Fang -- Yang, Huaiyu -- Yang, Linlin -- Jiang, Hualiang -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- Xu, H Eric -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):610-4. doi: 10.1126/science.1232807. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dihydroergotamine/chemistry/*metabolism ; Ergotamine/chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Sequence Data ; Mutagenesis ; Norfenfluramine/chemistry/metabolism ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propranolol/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/*chemistry/genetics/*metabolism ; Serotonin 5-HT1 Receptor Agonists/*chemistry/*metabolism ; Tryptamines/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-17
    Description: The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Karen S Y -- Siebert, Matthias -- Mertel, Sara -- Knoche, Elena -- Wegener, Stephanie -- Wichmann, Carolin -- Matkovic, Tanja -- Muhammad, Karzan -- Depner, Harald -- Mettke, Christoph -- Buckers, Johanna -- Hell, Stefan W -- Muller, Martin -- Davis, Graeme W -- Schmitz, Dietmar -- Sigrist, Stephan J -- New York, N.Y. -- Science. 2011 Dec 16;334(6062):1565-9. doi: 10.1126/science.1212991.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Institute for Biology, Free University Berlin, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/physiology ; Carrier Proteins/*physiology ; Drosophila ; Drosophila Proteins/genetics/*physiology ; Male ; Mutation ; Neurotransmitter Agents/*metabolism ; Presynaptic Terminals/*physiology ; Synapses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...