ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (36)
  • Open Access-Papers  (36)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (19)
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (18)
  • Elsevier  (19)
  • Elsevier Science Limited  (17)
  • American Association for the Advancement of Science (AAAS)
Collection
  • Articles  (36)
Source
  • Open Access-Papers  (36)
Years
  • 1
    Publication Date: 2021-06-15
    Description: We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of theDSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (fromboreholes deeper than 1000 m)have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Description: Published
    Description: 23–39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Dead Sea Fault ; Hydrogeochemistry ; Gas geochemistry ; He isotopes ; C isotopes ; Ophiolites ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: There is an urgent need to better constrain the global rates of mercury degassing from natural sources, including active volcanoes. Hitherto, estimates of volcanic fluxes have been limited by the poorly-determined speciation of Hg in volcanic emissions. Here, we present a systematic characterisation of mercury partitioning between gaseous (Hg(g)) and particulate (Hg(p)) forms in the volcanic plume of Mount Etna, the largest open-vent passively degassing volcano on Earth. We demonstrate that mercury transport is predominantly in the gas-phase, with a mean Hg(p)/Hg(g) ratio of ∼0.01 by mass. We also present the first simultaneous measurement of divalent gaseous mercury (HgII(g)) and total gaseous mercury (Hg(g)) in a volcanic plume, which suggests that Hg0(g) is the prevalent form of mercury in this context. These data are supported by the results of model simulations, carried out with HSC thermodynamic software. Based on a mean ‘bulk plume’ Hg/SO2 mass ratio of 8.7×10-6, and a contemporaneous volcanic SO2 flux of 0.8 Mt·yr-1, we estimate an Hg emission rate from Mt. Etna during passive degassing of 5.4 t·y-1 (range, 1.1-10 t·y-1). This corresponds to ~0.6% of global volcanic Hg emissions, and about 5% of Hg released from industrial activities in the Mediterranean area.
    Description: Published
    Description: 7377-7388
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Atmospheric mercury ; Volcanic degassing ; Gaseous and particulate mercury ; Atmospheric budgets ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-26
    Description: The volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.
    Description: -
    Description: Published
    Description: 55-66
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeochemistry ; geothermal systems ; Sr isotopes ; REE ; El Chichón Volcano ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-21
    Description: Volcanic plume samples taken in 2008 and 2009 from the Halemàumàu eruption at Kīlauea provide new insights into Kīlauea's degassing behaviour. The Cl, F and S gas systematics are consistent with syn-eruptive East Rift Zone measurements suggesting that the new Halemàumàu activity is fed by a convecting magma reservoir shallower than the main summit storage area. Comparison with degassing models suggests that plume halogen and S composition is controlled by very shallow (〈3m depth) decompression degassing and progressive loss of volatiles at the surface. Compared to most other global volcanoes, Kīlauea's gases are depleted in Cl with respect to S. Similarly, our Br/S and I/S ratio measurements in Halemàumàu's plume are lower than those measured at arc volcanoes, consistent with contributions from the subducting slab accounting for a significant proportion of the heavier halogens in arc emissions. Analyses of Hg in Halemàumàu's plume were inconclusive but suggest a flux of at least 0.6kgday -1 from this new vent, predominantly (〉77%) as gaseous elemental mercury at the point of emission. Sulphate is an important aerosol component (modal particle diameter ∼0.44μm). Aerosol halide ion concentrations are low compared to other systems, consistent with the lower proportion of gaseous hydrogen halides. Plume concentrations of many metallic elements (Rb, Cs, Be, B, Cr, Ni, Cu, Mo, Cd, W, Re, Ge, As, In, Sn, Sb, Te, Tl, Pb, Mg, Sr, Sc, Ti, V, Mn, Fe, Co, Y, Zr, Hf, Ta, Al, P, Ga, Th, U, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm) are elevated above background air. There is considerable variability in metal to SO 2 ratios but our ratios (generally at the lower end of the range previously measured at Kīlauea) support assertions that Kīlauea's emissions are metal-poor compared to other volcanic settings. Our aerosol Re and Cd measurements are complementary to degassing trends observed in Hawaiian rock suites although measured aerosol metal/S ratios are about an order of magnitude lower than those calculated from degassing trends determined from glass chemistry. Plume enrichment factors with respect to Hawaiian lavas are in broad agreement with those from previous studies allowing similar element classification schemes to be followed (i.e., lithophile elements having lower volatility and chalcophile elements having higher volatility). The proportion of metal associated with the largest particle size mode collected (〉2.5μm) and that bound to silicate is significantly higher for lithophiles than chalcophiles. Many metals show higher solubility in pH 7 buffer solution than deionised water suggesting that acidity is not the sole driver in terms of solubility. Nonetheless, many metals are largely water soluble when compared with the other sequential leachates suggesting that they are delivered to the environment in a bioavailable form. Preliminary analyses of environmental samples show that concentrations of metals are elevated in rainwater affected by the volcanic plume and even more so in fog. However, metal levels in grass samples showed no clear enrichment downwind of the active vents. © 2011 Elsevier Ltd.
    Description: Published
    Description: 292-323
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: acidity; aerosol; degassing; emission; halogen; isotopic ratio; lava; magma chamber; mercury (element); particle size; plume; solubility; trace metal; volcanic eruption; volcano ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of 0.38 and 1.4, respectively, from which we estimate an H2S flux of 6 to 9 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of 20 and 15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 and 4 to 8, respectively. We observe that source and plume SO2/H2S ratios at Vulcano are similar, suggesting that hydrogen sulfide is essentially inert on timescales of seconds to minutes. This finding has important implications for estimates of volcanic total sulfur budget at volcanoes since most existing measurements do not account for H2S emission.
    Description: Published
    Description: 1861–1871
    Description: partially_open
    Keywords: H2S atmospheric budget ; volcanic degassing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 665710 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Description: Published
    Description: 87-101
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Active volcanoes emit considerable amounts of contaminants such as As, Se and V. Mount Etna is the biggest volcano of Europe and an excellent geochemical site to study water-soil processes. Due to its volcanic activity, the rainwater has a strong compositional gradient, both in time and space. At present, the behaviour of trace elements in the soils around Mt Etna is poorly understood. To determine the influence of the rainwater pH on the potential mobilization of geogenic pollutants, batch experiments have been performed with synthetic rainwater for 25 soils collected along the flanks of the volcano. Our results show that: i) The maximum concentrations in the leaching solutions are higher for acid rain than for neutral rain (e.g. 7.7 vs 1.3 mg/L for Se). ii) With neutral rain conditions the soils upwind from the volcano have higher concentrations of Se than those downwind (up to 1.3 mg/L compared to ≤0.3 mg/L for the other samples). This trend is less clear for As and V. iii) For soils collected from 2 to 10 km downwind of the craters, Se concentrations in acid rain leachates decrease one order of magnitude with increasing distance. A similar pattern is also observed upwind from the volcano. For As and V no clear relationship between concentrations and location with respect to the volcanic craters is observed. Both i) and ii) result in a low pH dependence for samples upwind from the volcano. The biggest difference between acid and neutral leaching for As and V is observed for a sample 2 km downwind from the craters. The observed patterns are influenced by potential controlling factors, such as organic matter content, total concentrations, mineralogy, influence of the volcanic plume, etc. Our results have implications for the chemical composition of the Etnean aquifer, the only water resource to the one million inhabitants around Mt Etna, as well as for the bioavailability and potential toxicity through agricultural activities, essential to the local economy.
    Description: Published
    Description: Davos, Switzerland
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: volcanic soils ; selenium ; arsenic ; vanadium ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Volcanism at Mount Etna (Italy) has been observed for millennia and inspired ancient mythologies as well as scientific thought through countless generations.Yetmuch of our understanding of the way this volcano works stems fromstudies of the past 20 years, and in particular from strengthened monitoring since the late 1980s. In addition, the eruptive activity of Etna has undergone significant changes during the past 13 years, and these have led to an improved understanding of the relationship between the plumbing system of the volcano and instability of its eastern to southern f lanks. Following the end of the 1991–1993 eruption, a new eruptive cycle began, which so far has produced about 0.23 km3 of lavas and pyroclastics (dense-rock equivalent). The cycle evolved frominitial recharging of the plumbing system and inf lation, followed by powerful summit eruptions and slow spreading of the eastern to southern f lanks, to a sequence of f lank eruptions accompanied by accelerated f lank displacement. Structurally, the volcanic system has become increasingly unstable during this period. Volcanological, geophysical and geochemical data allow the cause–effect and feedback relationships between magma accumulation below the volcano, f lank instability, and the shift from continuous summit activity to episodic f lank eruptions to be investigated. In this scenario, the growth of magma storage areas at a depth of 3–5 km below sea level exerts pressure against those f lank sectors prone to displacement, causing them to detach from the stable portions of the volcanic edifice. Geochemical data indicate that magma remains stored belowthe volcano, even during phases of intense eruptive activity, thus causing a net volumetric increase that is accommodated by f lank displacement. Instability can be enhanced by the forceful uprise ofmagma through the f lanks, as in 2001, when the f irst f lank eruption of the current eruptive cycle took place. Subsequent f lank eruptions in 2002–2003 and 2004– 2004, on the other hand, were, at least in part, facilitated by the opening of fractures at the head of moving f lank sector, although the eruptions were significantly dissimilar from one another. Renewed inflation of the volcano after the 2004–2005 eruption, continued displacement of the unstable f lank sector, and gradual resumption of summit activity in late-2005, demonstrate that the same feedback mechanisms continue to be active, and the Etna system remains highly unstable. The evolution of earlier eruptive cycles shows that a return to a state of relative stability is only possible once a voluminous f lank eruption effectively drains the magmatic plumbing system.
    Description: Published
    Description: 85–114
    Description: reserved
    Keywords: Mount Etna ; eruptive cycle ; volcano monitoring ; seismicity ; deformation ; geochemistry ; structural geology ; magma storage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2522562 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...