ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (169)
  • Open Access-Papers  (169)
  • Elsevier  (167)
  • American Association for the Advancement of Science
  • Nature Publishing Group
  • 2020-2022  (18)
  • 2005-2009  (151)
  • 1980-1984
  • 1970-1974
Collection
  • Articles  (169)
Years
Year
  • 1
    Publication Date: 2020-10-29
    Description: We present new viscosity measurements for melts spanning a wide range of anhydrous compositions including: rhyolite, trachyte, moldavite, andesite, latite, pantellerite, basalt and basanite. Micropenetration and concentric cylinder viscometry measurements cover a viscosity range of 10−1 to 1012 Pas and a temperature range from 700 to 1650 °C. These new measurements, combined with other published data, provide a high-quality database comprising ∼800 experimental data on 44 well-characterized melt compositions. This database is used to recalibrate the model proposed by Giordano and Dingwell [Giordano, D., Dingwell, D. B., 2003a. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349] for predicting the viscosity of natural silicate melts. The present contribution clearly shows that: (1) the viscosity (η)–temperature relationship of natural silicate liquids is very well represented by the VFT equation [log η=A+B/ (T−C)] over the full range of viscosity considered here, (2) the use of a constant high-T limiting value of melt viscosity (e.g., A) is fully consistent with the experimental data, (3) there are 3 different compositional suites (peralkaline, metaluminous and peraluminous) that exhibit different patterns in viscosity, (4) the viscosity of metaluminous liquids is well described by a simple mathematical expression involving the compositional parameter (SM) but the compositional dependence of viscosity for peralkaline and peraluminous melts is not fully controlled by SM. For these extreme compositions we refitted the model using a temperature-dependent parameter based on the excess of alkalies relative to alumina (e.g., AE/SM). The recalibrated model reproduces the entire database to within 5% relative error (e.g., RMSE of 0.45 logunits).
    Description: Published
    Description: 42–56
    Description: reserved
    Keywords: Viscosity ; Model ; Silicate melts ; Metaluminous ; Peraluminous ; Peralkaline ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 717294 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: The Neapolitan volcanic area (Southern Italy), which includes the Phlegrean Volcanic District and the Somma– Vesuvius complex, has been the site of intense Plio-Quaternary magmatic activity and has produced volcanic rocks with a subduction-related geochemical and isotopic signature. High-Mg, K-basaltic lithic lava fragments dispersed within hydromagmatic tuff of the Solchiaro eruption (Procida Island) provide constraints on the nature and role of both the mantle source prior to enrichment and the subduction-related components. The geochemical data (Nb/Yb, Nb/Y, Zr/Hf) indicate a pre-enrichment source similar to that of enriched MORB mantle. In order to constrain the characteristics of subducted slab-derived components added to this mantle sector, new geochemical and Sr–Nd-isotopic data have been acquired on meta-sediments and pillow lavas from Timpa delle Murge ophiolites. These represent fragments of Tethyan oceanic crust (basalts and sediments) obducted during the Apennine orogeny, and may be similar to sediments subducted during the closure of the Tethys Ocean. Based on trace element compositions (e.g., Th/Nd, Nb/Th, Yb/Th and Ba/Th) and Nd-isotopic ratio, we hypothesize the addition of several distinct subducted slab-derived components to the mantle wedge: partial melts from shales and limestones, and aqueous fluids from shales, but the most important contribution is provided by melts from pelitic sediments. Also, trace elements and Sr–Nd-isotopic ratios seem to rule out a significant role for altered oceanic crust. Modeling based on variations of trace elements and isotopic ratios indicates that the pre-subduction mantle source of the Phlegrean Volcanic District and Somma–Vesuvius was enriched by 2–4% of subducted slab-derived components. This enrichment event might have stabilized amphibole and/or phlogopite in the mantle source. 6% degree of partial melting of a phlogopite-bearing enriched source, occurring initially in the garnet stability field and then in the spinel stability field can generate a melt with trace elements and Sr– Nd-isotopic features matching those of high-Mg, K-basalts of Procida Island. Furthermore, 2% partial melting of the same enriched source can reproduce the trace elements and isotopic features of the most primitive magmas of Somma–Vesuvius, subsequently modified by assimilation of continental crust during fractional crystallization processes at mid-lower depth. Combined trace element and Sr–Nd isotope modeling constrains the age of the enrichment event to 45 Ma ago, suggesting that the Plio-Quaternary magmatism of the Neapolitan area is postorogenic, and related to the subduction of oceanic crust belonging to the Tethys Ocean
    Description: Published
    Description: 165-183
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Sorgente sismica
    Description: 4T. Sismicità dell'Italia
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Neapolitan volcanic area ; Phlegrean Volcanic District ; Somma–Vesuvius complex ; Basilicata ophiolites
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-16
    Description: Here we report the results of the analysis of a GPS velocity field in the Umbria–Marche Apennines (central Italy) obtained from the integration of diverse geodetic networks. The velocity field obtained shows a high degree of consistency both spatially and in terms of comparison with independent information, despite the limited time span of some GPS stations. Starting from the velocity field we derive a continuous strain rate field applying a spline interpolation technique which provide a smooth estimate of the deformation field. The main feature of the resulting strain rate field is a continuous high (N50 nanostrain/year) strain rate belt coincident with the area of largest historical and instrumental seismic release. The model directions of the principal axes agree with geological and seismological information indicating NE–SW extension. We transform the strain rate field into geodetic moment rate using the Kostrov formula to evaluate the potential seismic activity of the region and compare it with actual seismic release in the last 720 years from MwN5.5 earthquakes. This comparison highlights a large possible deficit in the seismic release with respect to the overall potential seismic activity, particularly concentrated in the northern part of the study area. This discrepancy can be resolved with either a large amount of seismicity to be released in the near future or significant aseismic slip and deformation.
    Description: Published
    Description: 3-12
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; crustal deformation ; Northen Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-16
    Description: In this paper we present the results of preliminary geomorphic and trenching investigations along the Kahrizak fault. This fault is located south of the highly populated metropolis of Tehran and represents one of the main structures in the area containing important seismic potential. The Kahrizak fault has a very clear expression at the surface where it forms a prominent 35-km-long, 15-m-high scarp on Holocene alluvial deposits. The fault strikes N70°-80°W and dips to the north. Movement is prevalently right-lateral with the northern side of the fault up. Trench excavations exposed a sequence of weathered, massive, alluvial deposits which are dated, by means of radiometric methods, to the Holocene. In the trenches the sequence is intensely deformed by north-dipping, high- and low-angle faults within a 30-m-wide zone. On the basis of stratigraphic and structural relations, some evidence for individual Holocene earthquakes is found; however, we were not able to reconstruct the seismic history of the fault nor to evaluate the size of deformation produced by each event. Because of the possible ~10 m offset of ancient linear hydraulic artifacts (qanáts), that cross the fault, we hypothesize that the most recent event may have occurred in historical times (more recent than 5000 yr B.P.) and it may be one of those reported in this area by the current catalogues of seismicity. Based on these preliminary investigations we estimate an elapsed time between 5000 and 800 years, a maximum slip per event dmax of ~10 m, a minimum Holocene vertical slip rate of ~1 mm/yr versus a horizontal slip rate of ~3.5 mm/yr, a maximum of ~3000 years for the average recurrence time, and an expected Mw = 7.0 to 7.4. These can be considered as a first-hand reference for the activity on this fault.
    Description: Published
    Description: 187-199
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: Iran ; paleoseismicity ; geomorphology ; seismic hazard assessment ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The westernmost part of the Gulf of Corinth (Greece) is an area of very fast extension (~15 mm/yr according to geodetic measurements) and active normal faulting, accompanied by intense coastal uplift and high seismicity. This study presents geomorphic and biological evidence of Holocene coastal uplift at the western extremity of the Gulf, where such evidence was previously unknown. Narrow shore platforms (benches) and rare notches occur mainly on Holocene littoral conglomerates of uplifting small fan deltas. They are perhaps the only primary paleoseismic evidence likely to provide information on earthquake recurrence at coastal faults in the specific part of the Rift system, whereas dated marine fauna can provide constraints on average Holocene coastal uplift rate. The types of geomorphic and biological evidence identified are not ideal, and there are limitations and pitfalls involved in their evaluation. In a first approach, 5 uplifted paleoshorelines may be indentified, at 0.4- 0.7, 1.0-1.3, 1.4-1.7, 2.0-2.3 and 2.8-3.4 m a.m.s.l. They probably formed after 1728 or 2250 Cal. B.P. (depending on the marine reservoir correction used in the calibration of measured radiocarbon ages). A most conservative estimate for the average coastal uplift rate during the Late Holocene is 1.6 or 1.9 mm/yr minimum (with different amounts of reservoir correction). Part of the obtained radiocarbon ages of Lithophaga sp. allows for much higher Holocene uplift rates, of the order of 3-4 mm/yr, which cannot be discarded given that similar figures exist in the bibliography on Holocene and Pleistocene uplift at neighbouring areas. They should best be cross-checked by further studies though. That the identified paleoshoreline record corresponds to episodes of coastal uplift only, cannot be demonstrated beyond all doubt by independent evidence, but it appears the most likely interpretation, given the geological and active-tectonic context and, what is known about eustatic sea-level fluctuations in the Mediterranean. Proving that the documented uplifts were abrupt (i.e., arguably coseismic), is equally difficult, but reasonably expected and rather probable. Five earthquakes in the last ca. 2000 yrs on the coastal fault zone responsible for the uplift, compare well with historical seismicity and the results of recent on-fault paleoseismological studies at the nearby Eliki fault zone. Exact amounts of coseismic uplift cannot be determined precisely, unless the rate of uniform ("regional") non-seismic uplift of Northern Peloponnesus at the specific part of the Corinth Rift is somehow constrained.
    Description: EU project 3HAZ-Corinth
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Holocene Shorelines ; Coastal tectonics ; Paleoseismology ; Uplift ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Major and trace element and Sr–Nd–Hf–Pb isotopic data for the most primitive Tertiary lavas from the Veneto region (South-Eastern Alps, Italy) show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sri=0.70306–0.70378; "Ndi=+3.9 to +6.8; "Hfi=+6.4 to +8.1, 206Pb/204Pbi=18.786–19.574). P-wave seismic tomography of the mantle below the Veneto region shows the presence of low-velocity anomalies at depth, which is consistent with possible upwellings of plume material. Between the depths of 100–250 km the velocity anomalies are approximately 2–2.5% slower than average, implying a temperature excess of about 220–280 K, in agreement with estimates for other mantle plumes in the world. In this context, the Veneto volcanics may represent the shallow expression of a mantle upflow. The presence of a HIMU-DM component in a collision environment has significant geodynamic implications. Slab detachment and ensuing rise of deep mantle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting.
    Description: Published
    Description: 563–590
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: trace-element ; isotopic composition ; alkali basalts ; central-Europe ; slab break-off ; plume ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the 12 focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop 13 on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at 14 Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special 15 issue, collecting contributions from many of the participants at the workshop, we review here recent 16 advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic 17 and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, 18 including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase 19 equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, 20 cooling and crystallisation of magmas in the ^ Earth's crust; and their final atmospheric release as volcanic 21 gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals 22 is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in 23 both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, 24 our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the 25 key questions that require answers from future research are summarised in our conclusions.
    Description: PRIN 2008 and DPC-INGV 1381 2007-2009 grants; NSERC Dis- 1382 covery grant; NSF award EAR 0308866
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Volcanic gas ; Ore deposits ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We investigate the relationship between changes of the gravity field and the release of the seismic energy at Mt. Etna over a 12-year period (1994-2006), during which the volcano exhibited different eruptive patterns. Over the two sub-periods when intense gravity decreases occur, centered on the upper southeastern sector of the volcano (late-1996 to mid-1999 and late-2000 to mid-2001), the strain release curve displays neat long-term accelerations, with many hypocenters clustered in the volume containing the gravity source. Various evidences suggest that, since 1994 and until the breakout of the 2001 eruption, the eastern flank of Etna remained peripheral to the lines of rise of the magma from the deep storage to the surface. Accordingly, we hypothesize that, rather than being directly associated to the migration of the magma, the joint anomalies we found image phases of higher tensile stress on the upper southeastern sector, associated to increase in the rate of microfracturing along the NNW-SSE fracture zone. Such an increase implies a local density (gravity) decrease, and an increase in the release of seismic energy, thus explaining the correlation we observe. The second period of gravity decrease/strain release increase culminated in the breakout of the 2001 flank eruption, as a pressurized deeper magma accumulation used the inferred zone of increasing microfracturing as a path to the surface. This eruption marks an important modification in the structure of Etna’s plumbing system, as also testified by the absence of post-2001 long-term gravity changes and accelerations in the strain release curve and the neat modification of the seismicity and ground deformation patterns. Thus we prove that joint microgravity and seismic studies can allow zones of the medium experiencing an increase in the rate of microfracturing to be identified months to years before a magma batch is conveyed through them to the surface, setting off a lateral eruption.
    Description: Published
    Description: 282–292
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: microgravity changes ; seismic strain release ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special issue, collecting contributions from many of the participants at the workshop, we review here recent advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, cooling and crystallisation of magmas in the Earth's crust; and their final atmospheric release as volcanic gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the key questions that require answers from future research are summarised in our conclusions.
    Description: Published
    Description: 1-18
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Magmatic fluids ; Ore deposits ; Volcanic degassing ; Volcanic gas ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...