ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Public Library of Science  (275,023)
  • Hamburg : Deutsches Hydrographisches Institut
Collection
Publisher
Language
  • 101
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Biology 10 (2012): e1001234, doi:10.1371/journal.pbio.1001234.
    Description: Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.
    Description: The ChEsSo research programme was funded by a NERC Consortium Grant (NE/DO1249X/1) and supported by the Census of Marine Life and the Sloan Foundation, and the Total Foundation for Biodiversity (Abyss 2100)(SVTH) all of which are gratefully acknowledged. We also acknowledge NSF grant ANT-0739675 (CG and TS), NERC PhD studentships NE/D01429X/1(LH, LM, CNR), NE/H524922/1(JH) and NE/F010664/1 (WDKR), a Cusanuswerk doctoral fellowship, and a Lesley & Charles Hilton-Brown Scholarship, University of St. Andrews (PHBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e44015, doi:10.1371/journal.pone.0044015.
    Description: Taxonomists have been tasked with cataloguing and quantifying the Earth’s biodiversity. Their progress is measured in code-compliant species descriptions that include text, images, type material and molecular sequences. It is from this material that other researchers are to identify individuals of the same species in future observations. It has been estimated that 13% to 22% (depending on taxonomic group) of described species have only ever been observed once. Species that have only been observed at the time and place of their original description are referred to as oncers. Oncers are important to our current understanding of biodiversity. They may be validly described species that are members of a rare biosphere, or they may indicate endemism, or that these species are limited to very constrained niches. Alternatively, they may reflect that taxonomic practices are too poor to allow the organism to be re-identified or that the descriptions are unknown to other researchers. If the latter are true, our current tally of species will not be an accurate indication of what we know. In order to investigate this phenomenon and its potential causes, we examined the microbial eukaryote genus Gymnodinium. This genus contains 268 extant species, 103 (38%) of which have not been observed since their original description. We report traits of the original descriptions and interpret them in respect to the status of the species. We conclude that the majority of oncers were poorly described and their identity is ambiguous. As a result, we argue that the genus Gymnodinium contains only 234 identifiable species. Species that have been observed multiple times tend to have longer descriptions, written in English. The styles of individual authors have a major effect, with a few authors describing a disproportionate number of oncers. The information about the taxonomy of Gymnodinium that is available via the internet is incomplete, and reliance on it will not give access to all necessary knowledge. Six new names are presented – Gymnodinium campbelli for the homonymous name Gymnodinium translucens Campbell 1973, Gymnodinium antarcticum for the homonymous name Gymnodinium frigidum Balech 1965, Gymnodinium manchuriensis for the homonymous name Gymnodinium autumnale Skvortzov 1968, Gymnodinium christenum for the homonymous name Gymnodinium irregulare Christen 1959, Gymnodinium conkufferi for the homonymous name Gymnodinium irregulare Conrad & Kufferath 1954 and Gymnodinium chinensis for the homonymous name Gymnodinium frigidum Skvortzov 1968.
    Description: This work was funded by grants from the John D and Catherine T MacArthur Foundation and the Alfred P Sloan Foundation to the Encyclopedia of Life and the National Science Foundation Data Net Program 0830976 and Global Names Project DBI-1062387.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e42872, doi:10.1371/journal.pone.0042872.
    Description: The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.
    Description: This work was supported by King Abdullah University for Science and Technology Global Collaborative Partners (GCR) program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50215, doi:10.1371/journal.pone.0050215.
    Description: The cosmopolitan solitary deep-water scleractinian coral Desmophyllum dianthus (Esper, 1794) was selected as a representative model species of the polyphyletic Caryophylliidae family to (1) examine phylogenetic relationships with respect to the principal Scleractinia taxa, (2) check population structure, (3) test the widespread connectivity hypothesis and (4) assess the utility of different nuclear and mitochondrial markers currently in use. To carry out these goals, DNA sequence data from nuclear (ITS and 28S) and mitochondrial (16S and COI) markers were analyzed for several coral species and for Mediterranean populations of D. dianthus. Three phylogenetic methodologies (ML, MP and BI), based on data from the four molecular markers, all supported D. dianthus as clearly belonging to the “robust” clade, in which the species Lophelia pertusa and D. dianthus not only grouped together, but also shared haplotypes for some DNA markers. Molecular results also showed shared haplotypes among D. dianthus populations distributed in regions separated by several thousands of kilometers and by clear geographic barriers. These results could reflect limited molecular and morphological taxonomic resolution rather than real widespread connectivity. Additional studies are needed in order to find molecular markers and morphological features able to disentangle the complex phylogenetic relationship in the Order Scleractinia and to differentiate isolated populations, thus avoiding the homoplasy found in some morphological characters that are still considered in the literature.
    Description: This study was funded by CTM2009-00496 and CGL2011-23306 projects of the “Ministerio de Ciencia e Innovación” (Spain). Research at sea was partly supported by the European Commission F. P.VI Project HERMES Contract No. GOCE-CT-2005-511234-1) and the EU F.P. VII Project HERMIONE(contract number no. 226354).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e53889, doi:10.1371/journal.pone.0053889.
    Description: Thecosome pteropods (Mollusca, Gastropoda) are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals) and one from the Eastern tropical North Pacific (15 individuals). Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the “DNA barcoding” region of the cytochrome c oxidase subunit I (COI). Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of 〈3% (K2P distance) whereas the Pacific and Atlantic samples were more distant (~19%). Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (~24%). These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to environmental variability; furthermore, the apparent variation of the pteropods shell may have implications for our understanding of the species’ sensitivity to ocean acidification.
    Description: This material is based upon work supported by the National Science Foundation under Grant Number OCE-0928801. AEM was funded through the WHOI Postdoctoral Scholarship. Support to LBB was provided by the College of Liberal Arts & Sciences, University of Connecticut; and by the Census of Marine Life/Alfred P. Sloan Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e63714, doi:10.1371/journal.pone.0063714.
    Description: Anthropogenic carbon dioxide (CO2) is being absorbed into the ocean, altering seawater chemistry, with potentially negative impacts on a wide range of marine organisms. The early life stages of invertebrates with internal and external aragonite structures may be particularly vulnerable to this ocean acidification. Impacts to cephalopods, which form aragonite cuttlebones and statoliths, are of concern because of the central role they play in many ocean ecosystems and because of their importance to global fisheries. Atlantic longfin squid (Doryteuthis pealeii), an ecologically and economically valuable taxon, were reared from eggs to hatchlings (paralarvae) under ambient and elevated CO2 concentrations in replicated experimental trials. Animals raised under elevated pCO2 demonstrated significant developmental changes including increased time to hatching and shorter mantle lengths, although differences were small. Aragonite statoliths, critical for balance and detecting movement, had significantly reduced surface area and were abnormally shaped with increased porosity and altered crystal structure in elevated pCO2-reared paralarvae. These developmental and physiological effects could alter squid paralarvae behavior and survival in the wild, directly and indirectly impacting marine food webs and commercial fisheries.
    Description: This study was supported by a WHOI Student Summer Fellowship and WHOI-MIT Joint Program, the Penzance Endowed Fund, the John E. and Anne W. Sawyer Endowed Fund and NSF Research Grant No. EF-1220034. Additional support came from NSF OCE 1041106 to ALC and DCM, and NOAA Sea Grant award #NA10OAR4170083 to ALC and DCM.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e79574, doi:10.1371/journal.pone.0079574.
    Description: Transcription factors in the CNC-bZIP family (NFE2, NRF1, NRF2 and NRF3) regulate genes with a wide range of functions in response to both physiological and exogenous signals, including those indicating changes in cellular redox status. Given their role in helping to maintain cellular homeostasis, it is imperative to understand the expression, regulation, and function of CNC-bZIP genes during embryonic development. We explored the expression and function of six nrf genes (nfe2, nrf1a, nrf1b, nrf2a, nrf2b, and nrf3) using zebrafish embryos as a model system. Analysis by microarray and quantitative RT-PCR showed that genes in the nrf family were expressed throughout development from oocytes to larvae. The spatial expression of nrf3 suggested a role in regulating the development of the brain, brachia and pectoral fins. Knock-down by morpholino anti-sense oligonucleotides suggested that none of the genes were necessary for embryonic viability, but nfe2 was required for proper cellular organization in the pneumatic duct and subsequent swim bladder function, as well as for proper formation of the otic vesicles. nrf genes were induced by the oxidant tert-butylhydroperoxide, and some of this response was regulated through family members Nrf2a and Nrf2b. Our results provide a foundation for understanding the role of nrf genes in normal development and in regulating the response to oxidative stress in vertebrate embryos.
    Description: This work was supported, in whole or in part, by National Institutes of Health grants F32ES019832 (to L.M.W.), F32ES017585 (to A.R.T.-L.), R01ES015912 (to J.J.S.), and R01ES016366 (to M.E.H.). This work was also supported by Walter A. and Hope Noyes Smith and the J. Seward Johnson Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 8 (2013): e81150, doi:10.1371/journal.pone.0081150.
    Description: Parasitic dinoflagellates of the genus Amoebophrya infect free-living dinoflagellates, some of which can cause harmful algal blooms (HABs). High prevalence of Amoebophrya spp. has been linked to the decline of some HABs in marine systems. The objective of this study was to evaluate the impact of Amoebophrya spp. on the dynamics of dinoflagellate blooms in Salt Pond (MA, USA), particularly the harmful species Alexandrium fundyense. The abundance of Amoebophrya life stages was estimated 3–7 days per week through the full duration of an annual A. fundyense bloom using fluorescence in situ hybridization coupled with tyramide signal amplification (FISH- TSA). More than 20 potential hosts were recorded including Dinophysis spp., Protoperidinium spp. and Gonyaulax spp., but the only dinoflagellate cells infected by Amoebophrya spp. during the sampling period were A. fundyense. Maximum A. fundyense concentration co-occurred with an increase of infected hosts, followed by a massive release of Amoebophrya dinospores in the water column. On average, Amoebophrya spp. infected and killed ~30% of the A. fundyense population per day in the end phase of the bloom. The decline of the host A. fundyense population coincided with a dramatic life-cycle transition from vegetative division to sexual fusion. This transition occurred after maximum infected host concentrations and before peak infection percentages were observed, suggesting that most A. fundyense escaped parasite infection through sexual fusion. The results of this work highlight the importance of high frequency sampling of both parasite and host populations to accurately assess the impact of parasites on natural plankton assemblages.
    Description: L. Velo-Sua´rez was supported by a Marie Curie International Outgoing Fellowship (IOF; grant agreement: MOHAB PIOF-GA-252260). This work was supported in part by NSF grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grants 1P50-ES01274201 and 1P01ES021923-01 to D.M. Anderson and D.J. McGillicuddy through the Woods Hole Center for Oceans and Human Health, National Park Service Cooperative Agreement H238015504 to D.M. Anderson.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e88170, doi:10.1371/journal.pone.0088170.
    Description: Recent successful efforts to increase protection for manta rays has highlighted the lack of basic ecological information, including vertical and horizontal movement patterns, available for these species. We deployed pop-up satellite archival transmitting tags on nine reef manta rays, Manta alfredi, to determine diving behaviors and vertical habitat use. Transmitted and archived data were obtained from seven tagged mantas over deployment periods of 102–188 days, including three recovered tags containing 2.6 million depth, temperature, and light level data points collected every 10 or 15 seconds. Mantas frequented the upper 10 m during daylight hours and tended to occupy deeper water throughout the night. Six of the seven individuals performed a cumulative 76 deep dives (〉150 m) with one individual reaching 432 m, extending the known depth range of this coastal, reef-oriented species and confirming its role as an ecological link between epipelagic and mesopelagic habitats. Mean vertical velocities calculated from high-resolution dive data (62 dives 〉150 m) from three individuals suggested that mantas may use gliding behavior during travel and that this behavior may prove more efficient than continuous horizontal swimming. The behaviors in this study indicate manta rays provide a previously unknown link between the epi- and mesopelagic layers of an extremely oligotrophic marine environment and provide evidence of a third marine species that utilizes gliding to maximize movement efficiency.
    Description: inancial support was provided in part by KAUST baseline research funds (to MLB), KAUST award numbers USA00002 and KSA 00011 (to SRT), and the U.S. National Science Foundation (OCE 0825148 to SRT and GBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e87877, doi:10.1371/journal.pone.0087877.
    Description: The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.
    Description: This work was supported in part by National Institutes of Health (NIH) grants OD000329 and R01AI40312 (to JMM), R01ES006272 (to MEH), P42ES007381 (Superfund Research Program at Boston University to JS, DHS and MEH), R21CA134882 (to JS), NIH Training Grant T32 GM007175 (MML), and the Harvey V. Berneking Living Trust. BK is supported by Career Development Awards from the NIH/National Institute of Diabetes and Digestive and Kidney Diseases (DK083334) and the NASPGHAN Foundation. JEM is a recipient of the Human Frontiers Science Program Long-Term Fellowship (LT000231/2011-L). JMM is a recipient of the NIH Director's Pioneer Award Program, part of the NIH Roadmap for Medical Research, through grant DPI OD00329.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0119284, doi:10.1371/journal.pone.0119284 .
    Description: Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.
    Description: This work was supported by grants from the National Science Foundation [grants OCE-0926805 (DE and JAB), OCE-1155754 (DE), and OCE-1131109 (GWL)] and the National Aeronautics and Space Administration [NNX12AG20G (GWL and DE)].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0140578, doi: 10.1371/journal.pone.0140578.
    Description: Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.
    Description: This study was carried out within the context of the Science and Technology Center for Coastal Margin Observation & Prediction (CMOP) supported by the National Science Foundation, grant number OCE-0424602 to Antonio Baptista (http://www.stccmop.org).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2022-05-25
    Description: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The definitive version was published in PLoS One 11 (2016): e0162401, doi:10.1371/journal.pone.0162401.
    Description: Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.
    Description: The research for this paper was partially made possible by the financial support from the PRIN 2010-2011 Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (protocollo 2010RMTLYR) to RC. JMB acknowledges support from The Investment in Science Fund at WHOI. BG, JRE, AJ, LZ, and EMP were supported in part by the Office of Biological and Environmental Research, US Department of Energy (DOE) as part of the Mercury Science Focus Area at Oak Ridge National Laboratory, which is managed by UT-Battelle LLC for the DOE under contract DE-AC05-00OR22725.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLos One 13 (2018): e0200386, doi:10.1371/journal.pone.0200386.
    Description: Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding “fingernails”, and re-fabrication of soft manipulators at sea. These were then used to successfully grasp fragile deep-sea animals, such as goniasterids and holothurians, which have historically been difficult to collect undamaged via rigid mechanical arms and suction samplers. As scientific expeditions to remote parts of the world are costly and lengthy to plan, on-the-fly soft robot actuator printing offers a real-time solution to better understand and interact with delicate deep-sea environments, soft-bodied, brittle, and otherwise fragile organisms. This also offers a less invasive means of interacting with slow-growing deep marine organisms, some of which can be up to 18,000 years old.
    Description: This work is supported by NOAA OER Grant # NA17OAR0110083 “Exploration of the Seamounts of the Phoenix Islands Protected Area” to RDR, EEC, TMS and DFG and Schmidt Ocean Institute Grant: “What is the Current State of the Deep-Sea Coral Ecosystem in the Phoenix Island Protected Area?” to EEC, RDR, TMS and DFG; NSF Instrument Development for Biological Research Award # 1556164 to RJW and #1556123 to DFG; the National Academies Keck Futures Initiative of the National Academy of Sciences under award #NAKFI DBS21 to RJW and DFG; and NFS Research Fellowship awarded to KPB (#DGE1144152). It is also supported by the Wyss Institute for Biologically Inspired Engineering at Harvard University. We are grateful for the support from the National Geographic Society Innovation Challenge (Grant No.: SP 12-14) to RJW and DFG.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 13 (2018): e0207532, doi:10.1371/journal.pone.0207532.
    Description: Acoustic standing waves can precisely focus flowing particles or cells into tightly positioned streams for interrogation or downstream separations. The efficiency of an acoustic standing wave device is dependent upon operating at a resonance frequency. Small changes in a system’s temperature and sample salinity can shift the device’s resonance condition, leading to poor focusing. Practical implementation of an acoustic standing wave system requires an automated resonance control system to adjust the standing wave frequency in response to environmental changes. Here we have developed a rigorous approach for quantifying the optimal acoustic focusing frequency at any given environmental condition. We have demonstrated our approach across a wide range of temperature and salinity conditions to provide a robust characterization of how the optimal acoustic focusing resonance frequency shifts across these conditions. To generalize these results, two microfluidic bulk acoustic standing wave systems (a steel capillary and an etched silicon wafer) were examined. Models of these temperature and salinity effects suggest that it is the speed of sound within the liquid sample that dominates the resonance frequency shift. Using these results, a simple reference table can be generated to predict the optimal resonance condition as a function of temperature and salinity. Additionally, we show that there is a local impedance minimum associated with the optimal system resonance. The integration of the environmental results for coarse frequency tuning followed by a local impedance characterization for fine frequency adjustments, yields a highly accurate method of resonance control. Such an approach works across a wide range of environmental conditions, is easy to automate, and could have a significant impact across a wide range of microfluidic acoustic standing wave systems.
    Description: This research was supported by grants from the National Institute of General Medical Sciences of the National Institutes of Health under award number R21GM107805 and the NSF under award number (OCE-1130140 and OCE-1131134) to SWG, RJO, and HMS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 14(1), (2019):e0204193, doi: 10.1371/journal.pone.0204193.
    Description: The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions.
    Description: The authors would like to thank Dr. Cristina Roman-Vendrell and Louie Kerr, Director of the Central Microscopy Facility at the MBL, for technical support. We also thank Dr. Juan Diaz-Quiroz for helpful comments on the manuscript. EG was supported in part by an NSF REU Award (#1659604: Biological Discovery in Woods Hole at the Marine Biological Laboratory).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-05-25
    Description: © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 5 (2010): e8537, doi:10.1371/journal.pone.0008537.
    Description: Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity. The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This generalist's GSTs may operate as ‘all-purpose’ detoxification enzymes, capable of conjugating or sequestering a broad range of lipophilic gorgonian compounds, thereby allowing this predator to exploit a range of chemically-defended prey, resulting in a competitive dietary advantage for this species.
    Description: Financial support for this work was provided by the Ocean Life Institute Tropical Research Initiative Grant (WHOI) to KEW and MEH; the Robert H. Cole Endowed Ocean Ventures Fund (WHOI) to KEW; the National Undersea Research Center - Program Development Proposal (CMRC-03PRMN0103A) to KEW; Walter A. and Hope Noyes Smith, and a National Science Foundation Graduate Research Fellowship to KEW.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 5 (2010): e12805, doi:10.1371/journal.pone.0012805.
    Description: Circadian rhythms in behavior and physiology are the observable phenotypes from cycles in expression of, interactions between, and degradation of the underlying molecular components. In bilaterian animals, the core molecular components include Timeless-Timeout, photoreceptive cryptochromes, and several members of the basic-loop-helix-Per-ARNT-Sim (bHLH-PAS) family. While many of core circadian genes are conserved throughout the Bilateria, their specific roles vary among species. Here, we identify and experimentally study the rhythmic gene expression of conserved circadian clock members in a sea anemone in order to characterize this gene network in a member of the phylum Cnidaria and to infer critical components of the clockwork used in the last common ancestor of cnidarians and bilaterians. We identified homologs of circadian regulatory genes in the sea anemone Nematostella vectensis, including a gene most similar to Timeout, three cryptochromes, and several key bHLH-PAS transcription factors. We then maintained N. vectensis either in complete darkness or in a 12 hour light: 12 hour dark cycle in three different light treatments (blue only, full spectrum, blue-depleted). Gene expression varied in response to light cycle and light treatment, with a particularly strong pattern observed for NvClock. The cryptochromes more closely related to the light-sensitive clade of cryptochromes were upregulated in light treatments that included blue wavelengths. With co-immunoprecipitation, we determined that heterodimerization between CLOCK and CYCLE is conserved within N. vectensis. Additionally, we identified E-box motifs, DNA sequences recognized by the CLOCK:CYCLE heterodimer, upstream of genes showing rhythmic expression. This study reveals conserved molecular and functional components of the circadian clock that were in place at the divergence of the Cnidaria and Bilateria, suggesting the animal circadian clockwork is more ancient than previous data suggest. Characterizing circadian regulation in a cnidarian provides insight into the early origins of animal circadian rhythms and molecular regulation of environmentally cued behaviors.
    Description: The project described was supported by Award Number F32HD062178 to AMR from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the Tropical Research Initiative of the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28353, doi:10.1371/journal.pone.0028353.
    Description: Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean.
    Description: The work was funded by the Office of Naval Research and the National Ocean Partnership Program (US), by a consortium consisting of the Canary Islands Government, the Spanish Ministry of Environment and the Spanish Ministry of Defense, and by the European environmental funding LIFE-INDEMARES program for the inventory and designation of the Natura 2000 network in marine areas of the Spanish territory, headed by Fundacion Biodiversidad, with additional support from the Cabildo Insular of El Hierro. PA is currently supported by the National Research Project: Cetacean, Oceanography and Biodiversity from La Palma and El Hierro (CGL2009-13112) of the Spanish Ministry of Science and NAS by a Marie Curie fellowship from the 7th European Frame Program. MJ was supported by grants from the Strategic Environmental Research Development Program and from the National Ocean Partnership Program. PTM was supported by frame grants from the National Danish Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28257, doi:10.1371/journal.pone.0028257.
    Description: Cytochrome P450 1 (CYP1) genes are biomarkers for aryl hydrocarbon receptor (AHR) agonists and may be involved in some of their toxic effects. CYP1s other than the CYP1As are poorly studied in birds. Here we characterize avian CYP1B and CYP1C genes and the expression of the identified CYP1 genes and AHR1, comparing basal and induced levels in chicken and quail embryos. We cloned cDNAs of chicken CYP1C1 and quail CYP1B1 and AHR1. CYP1Cs occur in several bird genomes, but we found no CYP1C gene in quail. The CYP1C genomic region is highly conserved among vertebrates. This region also shares some synteny with the CYP1B region, consistent with CYP1B and CYP1C genes deriving from duplication of a common ancestor gene. Real-time RT-PCR analyses revealed similar tissue distribution patterns for CYP1A4, CYP1A5, CYP1B1, and AHR1 mRNA in chicken and quail embryos, with the highest basal expression of the CYP1As in liver, and of CYP1B1 in eye, brain, and heart. Chicken CYP1C1 mRNA levels were appreciable in eye and heart but relatively low in other organs. Basal transcript levels of the CYP1As were higher in quail than in chicken, while CYP1B1 levels were similar in the two species. 3,3′,4,5,5′-Pentachlorobiphenyl induced all CYP1s in chicken; in quail a 1000-fold higher dose induced the CYP1As, but not CYP1B1. The apparent absence of CYP1C1 in quail, and weak expression and induction of CYP1C1 in chicken suggest that CYP1Cs have diminishing roles in tetrapods; similar tissue expression suggests that such roles may be met by CYP1B1. Tissue distribution of CYP1B and CYP1C transcripts in birds resembles that previously found in zebrafish, suggesting that these genes serve similar functions in diverse vertebrates. Determining CYP1 catalytic functions in different species should indicate the evolving roles of these duplicated genes in physiological and toxicological processes.
    Description: Funding to MEJ and BB was from the Carl Tryggers Stiftelse and The Swedish Research Council Formas. Funding for BRW and JJS was from the United States National Institutes of Health (National Institute of Environmental Health Sciences), grants R01ES015912 and P42ES007381 to JJS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e33768, doi:10.1371/journal.pone.0033768.
    Description: Phosphorus (P) is a critical driver of phytoplankton growth and ecosystem function in the ocean. Diatoms are an abundant class of marine phytoplankton that are responsible for significant amounts of primary production. With the control they exert on the oceanic carbon cycle, there have been a number of studies focused on how diatoms respond to limiting macro and micronutrients such as iron and nitrogen. However, diatom physiological responses to P deficiency are poorly understood. Here, we couple deep sequencing of transcript tags and quantitative proteomics to analyze the diatom Thalassiosira pseudonana grown under P-replete and P-deficient conditions. A total of 318 transcripts were differentially regulated with a false discovery rate of 〈0.05, and a total of 136 proteins were differentially abundant (p〈0.05). Significant changes in the abundance of transcripts and proteins were observed and coordinated for multiple biochemical pathways, including glycolysis and translation. Patterns in transcript and protein abundance were also linked to physiological changes in cellular P distributions, and enzyme activities. These data demonstrate that diatom P deficiency results in changes in cellular P allocation through polyphosphate production, increased P transport, a switch to utilization of dissolved organic P through increased production of metalloenzymes, and a remodeling of the cell surface through production of sulfolipids. Together, these findings reveal that T. pseudonana has evolved a sophisticated response to P deficiency involving multiple biochemical strategies that are likely critical to its ability to respond to variations in environmental P availability.
    Description: This research was supported by the National Science Foundation (NSF) Environmental Genomics and NSF Biological Oceanography Program through grant OCE-0723667 to Dr. Dyhrman, Dr. Jenkins, Dr. Saito, and Dr. Rynearson, the NSF Chemical Oceanography Program through grant OCE-0549794 to Dr. Dyhrman and OCE-0526800 to Dr. Jenkins, the G. B. Moore Foundation and OCE-0752291 to Dr. Saito, NSF-EPSCoR (NSF-0554548 & NSF-1004057) to the University of Rhode Island, the Center for Microbial Oceanography: Research and Education, and the Joint Genome Institute/DOE Community Sequencing Program (CSP795793) to Dr. Jenkins, Dr. Dyhrman, Dr. Rynearson and Dr. Saito.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e43039, doi:10.1371/journal.pone.0043039.
    Description: The transition metal, copper (Cu), is an enzymatic cofactor required for a wide range of biochemical processes. Its essentiality is demonstrated by Menkes disease, an X-linked copper deficiency disorder characterized by defects in nervous-, cardiovascular- and skeletal systems, and is caused by mutations in the ATP7A copper transporter. Certain ATP7A mutations also cause X-linked Spinal Muscular Atrophy type 3 (SMAX3), which is characterized by neuromuscular defects absent an underlying systemic copper deficiency. While an understanding of these ATP7A-related disorders would clearly benefit from an animal model that permits tissue-specific deletion of the ATP7A gene, no such model currently exists. In this study, we generated a floxed mouse model allowing the conditional deletion of the Atp7a gene using Cre recombinase. Global deletion of Atp7a resulted in morphological and vascular defects in hemizygous male embryos and death in utero. Heterozygous deletion in females resulted in a 50% reduction in live births and a high postnatal lethality. These studies demonstrate the essential role of the Atp7a gene in mouse embryonic development and establish a powerful model for understanding the tissue-specific roles of ATP7A in copper metabolism and disease.
    Description: This work was supported by National Institutes of Health Grants DK59893 and DK093386 to M.J.P., and DK44464 to J.D.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e49474, doi:10.1371/journal.pone.0049474.
    Description: Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (〈2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.
    Description: This work was funded in part by a Fulbright Fellowship administered by Fulbright New Zealand and the U.S. Department of State, awarded in 2011 to EKB. Funding and support for research expedition was provided by Land Information New Zealand, New Zealand Ministry of Fisheries, NIWA, Census of Marine Life on Seamounts (CenSeam), and the Foundation for Research, Science and Technology. Other research funding was provided by the New Zealand Ministry of Science and Innovation project “Impacts of resource use on vulnerable deep-sea communities” (FRST contract CO1X0906), the National Science Foundation (OCE-0647612), and the Deep Ocean Exploration Institute (Fellowship support to TMS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Public Library of Science, doi:10.1371/journal.pone.0052072.
    Description: The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.
    Description: This work was funded by the Oticon Foundation (grant # 08-3469 to Arctic Station, OT). OT and MC were additionally funded by AP Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal, MS by a PhD scholarship from the Oticon Foundation, FHJ by a Danish Council for Independent Research, Natural Sciences post-doctoral grant, SEP by a grant from the U.S. Office of Naval Research, and PTM by frame grants from the Danish Natural Science Research Council.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e54069, doi:10.1371/journal.pone.0054069.
    Description: Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.
    Description: Funding was provided by the Saba Conservation Foundation ((SCF), King Abdullah University of Science and Technology, The Australian National University and Australian Research Council.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e70966, doi:10.1371/journal.pone.0070966.
    Description: Rising sea temperatures are causing significant destruction to coral reef ecosystems due to coral mortality from thermally-induced bleaching (loss of symbiotic algae and/or their photosynthetic pigments). Although bleaching has been intensively studied in corals, little is known about the causes and consequences of bleaching in other tropical symbiotic organisms. This study used underwater visual surveys to investigate bleaching in the 10 species of anemones that host anemonefishes. Bleaching was confirmed in seven anemone species (with anecdotal reports of bleaching in the other three species) at 10 of 19 survey locations spanning the Indo-Pacific and Red Sea, indicating that anemone bleaching is taxonomically and geographically widespread. In total, bleaching was observed in 490 of the 13,896 surveyed anemones (3.5%); however, this percentage was much higher (19–100%) during five major bleaching events that were associated with periods of elevated water temperatures and coral bleaching. There was considerable spatial variation in anemone bleaching during most of these events, suggesting that certain sites and deeper waters might act as refuges. Susceptibility to bleaching varied between species, and in some species, bleaching caused reductions in size and abundance. Anemones are long-lived with low natural mortality, which makes them particularly vulnerable to predicted increases in severity and frequency of bleaching events. Population viability will be severely compromised if anemones and their symbionts cannot acclimate or adapt to rising sea temperatures. Anemone bleaching also has negative effects to other species, particularly those that have an obligate relationship with anemones. These effects include reductions in abundance and reproductive output of anemonefishes. Therefore, the future of these iconic and commercially valuable coral reef fishes is inextricably linked to the ability of host anemones to cope with rising sea temperatures associated with climate change.
    Description: This work was supported by funding from the Red Sea Research Center at the King Abdullah University of Science and Technology (KAUST), The ARC Centre of Excellence for Coral Reef Studies, the National Science Foundation (OCE 0424688), the Coral Reef Initiatives for the Pacific (CRISP), the TOTAL Foundation, Populations Fractionees et Insulares (PPF EPHE), the Connectivity Working Group of the Global University of Queensland – World Bank – Global Environmental Facility Project, Coral Reef Target Research and Capacity Building for Management, Great Barrier Reef Marine Park Authority, and the Australian Government Department of Sustainability, Environment, Water, Population and Communities. J-P Hobbs is supported by a UWA-AIMS-CSIRO fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 8 (2013): e74265, doi:10.1371/journal.pone.0074265.
    Description: Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand population structures. Among sequences classified to genus, Alcanivorax, Alteromonas, Marinobacter, Winogradskyella, and Zeaxanthinibacter exhibited the largest relative abundance increases in oiled sands.
    Description: Financial support for this work was provided by the University of Wisconsin-Milwaukee National Institute of Environmental Health Sciences program, grant ES-004184 to SLM and the Alfred P. Sloan Foundation's grant for the Rare Biosphere in the Built Environment MLS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2022-05-25
    Description: This article is distributed free of all copyright. The definitive version was published in PLoS One 9 (2014): e84006, doi:10.1371/journal.pone.0084006.
    Description: Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ14C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of 14C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought.
    Description: This study was funded by the National Science Foundation (OCE 0825148 was awarded to SRT) and LLH was supported by the National Science Foundation Graduate Research Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e85872, doi:10.1371/journal.pone.0085872.
    Description: Assemblages of megabenthos are structured in seven depth-related zones between ~700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000–1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000–2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed - a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000–2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability.
    Description: Components of this work were supported by the National Science Foundation, the Australian Department of Environment, Water, Heritage, and the Arts, the Australian Commonwealth Environmental Research Fund, a grant of ship time by the Australian National Research Facility, and the CSIRO Wealth from Oceans and Climate Adaptation Flagships.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e88618, doi:10.1371/journal.pone.0088618.
    Description: The taxon Syndermata comprises the biologically interesting wheel animals (“Rotifera”: Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved.
    Description: The work was funded by the Deutsche Forschungsgemeinschaft (DFG grant Ha2103/4-3, Priority Project "Deep Metazoan Phylogeny", SPP1174; www. dfg.de). Additional financial support came from the Center for Computational Sciences (SRFN) of Johannes Gutenberg University Mainz (http://www.csm.unimainz. de).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e97338, doi:10.1371/journal.pone.0097338.
    Description: Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.
    Description: This work was supported by King Abdullah University for Science and Technology Global Collaborative Partners (GCR) program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: image/tiff
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0133963, doi: 10.1371/journal.pone.0133963.
    Description: The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts.
    Description: This work was supported by grants from the Wellcome Trust (101480/Z/13/Z, http://www.wellcome.ac.uk/stellent/group​s/corporatesite/@msh_publishing_group/do​cuments/web_document/wts058331.pdf) and Biotechnology and Biological Sciences Research Council (BB/K019988/1, http://www.bbsrc.ac.uk/pa/grants/AwardDe​tails.aspx?FundingReference=BB/K019988/1) to the European Xenopus Resource Centre. This work was also supported by a Grant-in-Aid for Young Scientists (B) (No. 23710282, http://kaken.nii.ac.jp/d/p/23710282.en.h​tml) to TI from the Ministry of Education, Culture, Sports, Science and Technology, Japan and a Grant-in-Aid for Scientific Research (B) (No. 20510216, http://kaken.nii.ac.jp/d/p/24310173.en.h​tml) to MS from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One (10): e0141842, doi:10.1371/journal.pone.0141842.
    Description: Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.
    Description: This work was supported by a grant from Johnson & Johnson (China).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0143299, doi:10.1371/journal.pone.0143299.
    Description: For phytoplankton and other microbes, nutrient receptors are often the passages through which viruses invade. This presents a bottom-up vs. top-down, co-limitation scenario; how do these would-be-hosts balance minimizing viral susceptibility with maximizing uptake of limiting nutrient(s)? This question has been addressed in the biological literature on evolutionary timescales for populations, but a shorter timescale, mechanistic perspective is lacking, and marine viral literature suggests the strong influence of additional factors, e.g. host size; while the literature on both nutrient uptake and host-virus interactions is expansive, their intersection, of ubiquitous relevance to marine environments, is understudied. I present a simple, mechanistic model from first principles to analyze the effect of this co-limitation scenario on individual growth, which suggests that in environments with high risk of viral invasion or spatial/temporal heterogeneity, an individual host’s growth rate may be optimized with respect to receptor coverage, producing top-down selective pressure on short timescales. The model has general applicability, is suggestive of hypotheses for empirical exploration, and can be extended to theoretical studies of more complex behaviors and systems.
    Description: This work was supported by the Massachusetts Institute of Technology Charles Vest Presidential Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 12 (2017): e0173350, doi:10.1371/journal.pone.0173350.
    Description: Scleractinian coral are experiencing unprecedented rates of mortality due to increases in sea surface temperatures in response to global climate change. Some coral species however, survive high temperature events due to a reduced susceptibility to bleaching. We investigated the relationship between bleaching susceptibility and expression of five metabolically related genes of Symbiodinium spp. from the coral Porites astreoides originating from an inshore and offshore reef in the Florida Keys. The acclimatization potential of Symbiodinium spp. to changing temperature regimes was also measured via a two-year reciprocal transplant between the sites. Offshore coral fragments displayed significantly higher expression in Symbiodinium spp. genes PCNA, SCP2, G3PDH, PCP and psaE than their inshore counterparts (p〈0.05), a pattern consistent with increased bleaching susceptibility in offshore corals. Additionally, gene expression patterns in Symbiodinium spp. from site of origin were conserved throughout the two-year reciprocal transplant, indicating acclimatization did not occur within this multi-season time frame. Further, laboratory experiments were used to investigate the influence of acute high temperature (32°C for eight hours) and disease (lipopolysaccharide of Serratia marcescens) on the five metabolically related symbiont genes from the same offshore and inshore P. astreoides fragments. Gene expression did not differ between reef fragments, or as a consequence of acute exposure to heat or heat and disease, contrasting to results found in the field. Gene expression reported here indicates functional variation in populations of Symbiodinium spp. associated with P. astreoides in the Florida Keys, and is likely a result of localized adaptation. However, gene expression patterns observed in the lab imply that functional variation in zooxanthellae observed under conditions of chronic moderate stress is lost under the acute extreme conditions studied here.
    Description: Funding for this research was provided by Coastal Preservation network (KBS, BHS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 12 (2017): e0179318, doi: 10.1371/journal.pone.0179318.
    Description: Trace metals are essential for health but toxic when present in excess. The maintenance of trace metals at physiologic levels reflects both import and export by cells and absorption and excretion by organs. The mechanism by which this maintenance is achieved in vertebrate organisms is incompletely understood. To explore this, we chose zebrafish as our model organism, as they are amenable to both pharmacologic and genetic manipulation and comprise an ideal system for genetic screens and toxicological studies. To characterize trace metal content in developing zebrafish, we measured levels of three trace elements, copper, zinc, and manganese, from the oocyte stage to 30 days post-fertilization using inductively coupled plasma mass spectrometry. Our results indicate that metal levels are stable until zebrafish can acquire metals from the environment and imply that the early embryo relies on maternal contribution of metals to the oocyte. We also measured metal levels in bodies and yolks of embryos reared in presence and absence of the copper chelator neocuproine. All three metals exhibited different relative abundances between yolks and bodies of embryos. While neocuproine treatment led to an expected phenotype of copper deficiency, total copper levels were unaffected, indicating that measurement of total metal levels does not equate with measurement of biologically active metal levels. Overall, our data not only can be used in the design and execution of genetic, physiologic, and toxicologic studies but also has implications for the understanding of vertebrate metal homeostasis.
    Description: This work was supported by the National Institutes of Health, R00 DK84122.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-05-25
    Description: © 2006 Davids et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The definitive version was published in PLoS ONE 1 (2006): e44, doi:10.1371/journal.pone.0000044.
    Description: Since the Giardia lamblia cyst wall is necessary for survival in the environment and host infection, we tested the hypothesis that it contains proteins other than the three known cyst wall proteins. Serial analysis of gene expression during growth and encystation revealed a gene, “HCNCp” (High Cysteine Non-variant Cyst protein), that was upregulated late in encystation, and that resembled the classic Giardia variable surface proteins (VSPs) that cover the trophozoite plasmalemma. HCNCp is 13.9% cysteine, with many “CxxC” tetrapeptide motifs and a transmembrane sequence near the C-terminus. However, HCNCp has multiple “CxC” motifs rarely found in VSPs, and does not localize to the trophozoite plasmalemma. Moreover, the HCNCp C-terminus differed from the canonical VSP signature. Full-length epitope-tagged HCNCp expressed under its own promoter was upregulated during encystation with highest expression in cysts, including 42 and 21 kDa C-terminal fragments. Tagged HCNCp targeted to the nuclear envelope in trophozoites, and co-localized with cyst proteins to encystation-specific secretory vesicles during encystation. HCNCp defined a novel trafficking pathway as it localized to the wall and body of cysts, while the cyst proteins were exclusively in the wall. Unlike VSPs, HCNCp is expressed in at least five giardial strains and four WB subclones expressing different VSPs. Bioinformatics identified 60 additional large high cysteine membrane proteins (HCMp) containing ≥20 CxxC/CxC's lacking the VSP-specific C-terminal CRGKA. HCMp were absent or rare in other model or parasite genomes, except for Tetrahymena thermophila with 30. MEME analysis classified the 61 gHCMp genes into nine groups with similar internal motifs. Our data suggest that HCNCp is a novel invariant cyst protein belonging to a new HCMp family that is abundant in the Giardia genome. HCNCp and the other HCMp provide a rich source for developing parasite-specific diagnostic reagents, vaccine candidates, and subjects for further research into Giardia biology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2022-05-25
    Description: © 2009 Rabbitt et al. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 5 (2009): e1000444, doi:10.1371/journal.pcbi.1000444.
    Description: Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.
    Description: This work was supported by NIDCD R01 DC04928 (Rabbitt), NIDCD R01 DC00384 (Brownell) and NASA Ames GSRA56000135 (Breneman).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2022-05-25
    Description: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The definitive version was published in PLoS ONE 5 (2010): e9597, doi:10.1371/journal.pone.0009597.
    Description: The objective of this study was to enhance removal of fishing gear from right whales (Eubalaena glacialis) at sea that evade disentanglement boat approaches. Titrated intra muscular injections to achieve sedation were undertaken on two free swimming right whales. Following initial trials with beached whales, a sedation protocol was developed for right whales. Mass was estimated from sighting and necropsy data from comparable right whales. Midazolam (0.01 to 0.025 mg/kg) was first given alone or with meperidine (0.17 to 0.25 mg/kg) either once or four times over two hours to whale #1102 by cantilevered pole syringe. In the last attempt on whale #1102 there appeared to be a mild effect in 20–30 minutes, with duration of less than 2 hours that included exhalation before the blowhole fully cleared the water. Boat avoidance, used as a measure of sedation depth, was not reduced. A second severely entangled animal in 2009, whale #3311, received midazolam (0.03 mg/kg) followed by butorphanol (0.03 mg/kg) an hour later, delivered ballistically. Two months later it was then given midazolam (0.07 mg/kg) and butorphanol (0.07 mg/kg) simultaneously. The next day both drugs at 0.1 mg/kg were given as a mixture in two darts 10 minutes apart. The first attempt on whale #3311 showed increased swimming speed and boat avoidance was observed after a further 20 minutes. The second attempt on whale #3311 showed respiration increasing mildly in frequency and decreasing in strength. The third attempt on whale #3311 gave a statistically significant increase in respiratory frequency an hour after injection, with increased swimming speed and marked reduction of boat evasion that enabled decisive cuts to entangling gear. We conclude that butorphanol and midazolam delivered ballistically in appropriate dosages and combinations may have merit in future refractory free swimming entangled right whale cases until other entanglement solutions are developed.
    Description: This work was funded by Cecil H. and Ida M. Green Technology Innovation Program (WHOI), North Pond Foundation, Sloan and Wick Simmonds, Northeast Consortium, National Oceanic Atmospheric Administration (NOAA), Georgia Department of Natural Resources, Florida Fish and Wildlife Conservation Commission, Provincetown Center for Coastal Studies, Coastwise Consulting, the Atlantic Large Whale Disentanglement Network, and Aquatic Animal Health Program, University of Florida.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2022-05-25
    Description: The work is made available under the Creative Commons CC0 public domain dedication. The definitive version was published in PLoS Computational Biology 7 (2011): e1002089, doi:10.1371/journal.pcbi.1002089.
    Description: An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1) spike generation in a neuron can be highly discriminatory for stimulus shape and 2) the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks.
    Description: This work was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 and NIH grant R01 HL718884 to DP. DBF is an AFOSR Young Investigator (FA 9550-08-01-0076).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e27693, doi:10.1371/journal.pone.0027693.
    Description: Atlantic bluefin tuna (Thunnus thynnus) is considered to be overfished, but the status of its populations has been debated, partly because of uncertainties regarding the effects of mixing on fishing grounds. A better understanding of spatial structure and mixing may help fisheries managers to successfully rebuild populations to sustainable levels while maximizing catches. We formulate a new seasonally and spatially explicit fisheries model that is fitted to conventional and electronic tag data, historic catch-at-age reconstructions, and otolith microchemistry stock-composition data to improve the capacity to assess past, current, and future population sizes of Atlantic bluefin tuna. We apply the model to estimate spatial and temporal mixing of the eastern (Mediterranean) and western (Gulf of Mexico) populations, and to reconstruct abundances from 1950 to 2008. We show that western and eastern populations have been reduced to 17% and 33%, respectively, of 1950 spawning stock biomass levels. Overfishing to below the biomass that produces maximum sustainable yield occurred in the 1960s and the late 1990s for western and eastern populations, respectively. The model predicts that mixing depends on season, ontogeny, and location, and is highest in the western Atlantic. Assuming that future catches are zero, western and eastern populations are predicted to recover to levels at maximum sustainable yield by 2025 and 2015, respectively. However, the western population will not recover with catches of 1750 and 12,900 tonnes (the “rebuilding quotas”) in the western and eastern Atlantic, respectively, with or without closures in the Gulf of Mexico. If future catches are double the rebuilding quotas, then rebuilding of both populations will be compromised. If fishing were to continue in the eastern Atlantic at the unregulated levels of 2007, both stocks would continue to decline. Since populations mix on North Atlantic foraging grounds, successful rebuilding policies will benefit from trans-Atlantic cooperation.
    Description: This work was supported by grants from the TAG A Giant Foundation, the Monterey Bay Aquarium Foundation, the Lenfest Ocean Program, Washington, DC, USA, the Canadian Fisheries and Oceans International Governance Strategies Fund and the National Oceanic and Atmospheric Administration (NOAA) of the United States.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28949, doi:10.1371/journal.pone.0028949.
    Description: Shotgun mass spectrometry was used to detect proteins in the harmful alga, Aureococcus anophagefferens, and monitor their relative abundance across nutrient replete (control), phosphate-deficient (−P) and −P refed with phosphate (P-refed) conditions. Spectral counting techniques identified differentially abundant proteins and demonstrated that under phosphate deficiency, A. anophagefferens increases proteins involved in both inorganic and organic phosphorus (P) scavenging, including a phosphate transporter, 5′-nucleotidase, and alkaline phosphatase. Additionally, an increase in abundance of a sulfolipid biosynthesis protein was detected in −P and P-refed conditions. Analysis of the polar membrane lipids showed that cellular concentrations of the sulfolipid sulphoquinovosyldiacylglycerol (SQDG) were nearly two-fold greater in the −P condition versus the control condition, while cellular phospholipids were approximately 8-fold less. Transcript and protein abundances were more tightly coupled for gene products involved in P metabolism compared to those involved in a range of other metabolic functions. Comparison of protein abundances between the −P and P-refed conditions identified differences in the timing of protein degradation and turnover. This suggests that culture studies examining nutrient starvation responses will be valuable in interpreting protein abundance patterns for cellular nutritional status and history in metaproteomic datasets.
    Description: Research for this work was supported by a National Oceanic and Atmospheric Administration ECOHAB grant (#NA09NOS4780206) and National Science Foundation grant (#OCE-0723667) and a STAR Research Assistance Agreement No. R-83041501-0 awarded by the U.S. Environmental Protection Agency. Further support came from the Woods Hole Coastal Ocean Institute. LLW was supported by a Environmental Protection Agency STAR Fellowship (#FP916901). EMB was supported by a National Science Foundation (NSF) Graduate Research Fellowship (#2007037200) and an Environmental Protection Agency STAR Fellowship (#F6E20324).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 7 (2011): e1002318, doi:10.1371/journal.pcbi.1002318.
    Description: Function diversification in large protein families is a major mechanism driving expansion of cellular networks, providing organisms with new metabolic capabilities and thus adding to their evolutionary success. However, our understanding of the evolutionary mechanisms of functional diversity in such families is very limited, which, among many other reasons, is due to the lack of functionally well-characterized sets of proteins. Here, using the FGGY carbohydrate kinase family as an example, we built a confidently annotated reference set (CARS) of proteins by propagating experimentally verified functional assignments to a limited number of homologous proteins that are supported by their genomic and functional contexts. Then, we analyzed, on both the phylogenetic and the molecular levels, the evolution of different functional specificities in this family. The results show that the different functions (substrate specificities) encoded by FGGY kinases have emerged only once in the evolutionary history following an apparently simple divergent evolutionary model. At the same time, on the molecular level, one isofunctional group (L-ribulokinase, AraB) evolved at least two independent solutions that employed distinct specificity-determining residues for the recognition of a same substrate (L-ribulose). Our analysis provides a detailed model of the evolution of the FGGY kinase family. It also shows that only combined molecular and phylogenetic approaches can help reconstruct a full picture of functional diversifications in such diverse families.
    Description: This study was funded by NIH and DOE grants.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e29813, doi:10.1371/journal.pone.0029813.
    Description: Melanopsin, the receptor molecule that underlies light sensitivity in mammalian ‘circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.
    Description: This work was supported by the National Science Foundation of the USA (grant 0918930).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e45138, doi:10.1371/journal.pone.0045138.
    Description: A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of geographical variation patterns across the range of the killifish (Fundulus heteroclitus) in 310 loci, including microsatellites, allozymes, and single nucleotide polymorphisms. We employed two approaches to detect loci under strong diversifying selection. First, we developed an automated method to identify clinal variation on a per-locus basis and examined the distribution of clines to detect those that exhibited signifcantly steeper slopes. Second, we employed a classic -outlier method as a complementary approach. We also assessed performance of these techniques using simulations. Overall, latitudinal clines were detected in nearly half of all loci genotyped (i.e., all eight microsatellite loci, 12 of 16 allozyme loci and 44% of the 285 SNPs). With the exception of few outlier loci (notably mtDNA and malate dehydrogenase), the positions and slopes of Fundulus clines were statistically indistinguishable. The high frequency of latitudinal clines across the genome indicates that secondary contact plays a central role in the historical demography of this species. Our simulation results indicate that accurately detecting diversifying selection using genome scans is extremely difficult in species with a strong signal of secondary contact; neutral evolution under this history produces clines as steep as those expected under selection. Based on these results, we propose that demographic history can explain all clinal patterns observed in F. heteroclitus without invoking natural selection to either establish or maintain the pattern we observe today.
    Description: This work was supported by the National Science Foundation (DEB-0919064 and IOS-1052262
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e78275, doi:10.1371/journal.pone.0078275.
    Description: Anaerobic ammonia oxidation (anammox) as an important nitrogen loss pathway has been reported in marine oxygen minimum zones (OMZs), but the community composition and spatial distribution of anammox bacteria in the eastern tropical North Pacific (ETNP) OMZ are poorly determined. In this study, anammox bacterial communities in the OMZ off Costa Rica (CRD-OMZ) were analyzed based on both hydrazine oxidoreductase (hzo) genes and their transcripts assigned to cluster 1 and 2. The anammox communities revealed by hzo genes and proteins in CRD-OMZ showed a low diversity. Gene quantification results showed that hzo gene abundances peaked in the upper OMZs, associated with the peaks of nitrite concentration. Nitrite and oxygen concentrations may therefore colimit the distribution of anammox bacteria in this area. Furthermore, transcriptional activity of anammox bacteria was confirmed by obtaining abundant hzo mRNA transcripts through qRT-PCR. A novel hzo cluster 2x clade was identified by the phylogenetic analysis and these novel sequences were abundant and widely distributed in this environment. Our study demonstrated that both cluster 1 and 2 anammox bacteria play an active role in the CRD-OMZ, and the cluster 1 abundance and transcriptional activity were higher than cluster 2 in both free-living and particle-attached fractions at both gene and transcriptional levels.
    Description: National Science Foundation (OCE #0961098) Hong Kong Research Grants Council (661911 and 661912) Chinese Academy of Science (SIDSSE-BR-201301).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e77671, doi:10.1371/journal.pone.0077671.
    Description: Bottlenose dolphins (Tursiops truncatus) produce many vocalisations, including whistles that are unique to the individual producing them. Such “signature whistles” play a role in individual recognition and maintaining group integrity. Previous work has shown that humans can successfully group the spectrographic representations of signature whistles according to the individual dolphins that produced them. However, attempts at using mathematical algorithms to perform a similar task have been less successful. A greater understanding of the encoding of identity information in signature whistles is important for assessing similarity of whistles and thus social influences on the development of these learned calls. We re-examined 400 signature whistles from 20 individual dolphins used in a previous study, and tested the performance of new mathematical algorithms. We compared the measure used in the original study (correlation matrix of evenly sampled frequency measurements) to one used in several previous studies (similarity matrix of time-warped whistles), and to a new algorithm based on the Parsons code, used in music retrieval databases. The Parsons code records the direction of frequency change at each time step, and is effective at capturing human perception of music. We analysed similarity matrices from each of these three techniques, as well as a random control, by unsupervised clustering using three separate techniques: k-means clustering, hierarchical clustering, and an adaptive resonance theory neural network. For each of the three clustering techniques, a seven-level Parsons algorithm provided better clustering than the correlation and dynamic time warping algorithms, and was closer to the near-perfect visual categorisations of human judges. Thus, the Parsons code captures much of the individual identity information present in signature whistles, and may prove useful in studies requiring quantification of whistle similarity.
    Description: Arik Kershenbaum is a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Award #EF-0832858, with additional support from The University of Tennessee, Knoxville. Part of this work was conducted while Arik Kershenbaum was provided with a doctoral scholarship by the University of Haifa. Funding for access to the dolphins for recordings was provided by Dolphin Quest and the Chicago Zoological Society.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 8 (2013): e80192, doi:10.1371/journal.pone.0080192.
    Description: In vertebrates and arthropods, blood clotting involves the establishment of a plug of aggregated thrombocytes (the cellular clot) and an extracellular fibrillar clot formed by the polymerization of the structural protein of the clot, which is fibrin in mammals, plasma lipoprotein in crustaceans, and coagulin in the horseshoe crab, Limulus polyphemus. Both elements of the clot function to staunch bleeding. Additionally, the extracellular clot functions as an agent of the innate immune system by providing a passive anti-microbial barrier and microbial entrapment device, which functions directly at the site of wounds to the integument. Here we show that, in addition to these passive functions in immunity, the plasma lipoprotein clot of lobster, the coagulin clot of Limulus, and both the platelet thrombus and the fibrin clot of mammals (human, mouse) operate to capture lipopolysaccharide (LPS, endotoxin). The lipid A core of LPS is the principal agent of gram-negative septicemia, which is responsible for more than 100,000 human deaths annually in the United States and is similarly toxic to arthropods. Quantification using the Limulus Amebocyte Lysate (LAL) test shows that clots capture significant quantities of LPS and fluorescent-labeled LPS can be seen by microscopy to decorate the clot fibrils. Thrombi generated in the living mouse accumulate LPS in vivo. It is suggested that capture of LPS released from gram-negative bacteria entrapped by the blood clot operates to protect against the disease that might be caused by its systemic dispersal.
    Description: Grant # 0344360 from the National Science Foundation (PBA).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/avi
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 10 (2015): e0117193, doi:10.1371/journal.pone.0117193.
    Description: The article reports the radiocarbon investigation results of the Lebombo Eco Trail tree, a representative African baobab from Mozambique. Several wood samples collected from the large inner cavity and from the outer part of the tree were investigated by AMS radiocarbon dating. According to dating results, the age values of all samples increase from the sampling point with the distance into the wood. For samples collected from the cavity walls, the increase of age values with the distance into the wood (up to a point of maximum age) represents a major anomaly. The only realistic explanation for this anomaly is that such inner cavities are, in fact, natural empty spaces between several fused stems disposed in a ring-shaped structure. We named them false cavities. Several important differences between normal cavities and false cavities are presented. Eventually, we dated other African baobabs with false inner cavities. We found that this new architecture enables baobabs to reach large sizes and old ages. The radiocarbon date of the oldest sample was 1425 ± 24 BP, which corresponds to a calibrated age of 1355 ± 15 yr. The dating results also show that the Lebombo baobab consists of five fused stems, with ages between 900 and 1400 years; these five stems build the complete ring. The ring and the false cavity closed 800–900 years ago. The results also indicate that the stems stopped growing toward the false cavity over the past 500 years.
    Description: The research was fully funded by the Romanian Ministry of National Education CNCS-UEFISCDI under grant PN-II-ID-PCE-2013-76.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This is an open access article, free of all copyright. The definitive version was published in PLoS One 10 (2015): e0124145, doi:10.1371/journal.pone.0124145.
    Description: Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.
    Description: Cooley, Rheuban, and Doney were supported by NOAA Grant NA12NOS4780145 (www.noaa.gov) and the Center for Climate and Energy Decision Making (CEDM, NSF SES-0949710) (www.nsf.gov). Luu was supported by a WHOI Summer Student Fellowship (www.whoi.edu).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0129719, doi: 10.1371/journal.pone.0129719.
    Description: We applied a series of selective antibodies for labeling the various cell types in the mammalian retina. These were used to identify the progressive loss of neurons in the FVB/N mouse, a model of early onset retinal degeneration produced by a mutation in the pde6b gene. The immunocytochemical studies, together with electroretinogram (ERG) recordings, enabled us to examine the time course of the degenerative changes that extended from the photoreceptors to the ganglion cells at the proximal end of the retina. Our study indicates that photoreceptors in FVB/N undergo a rapid degeneration within three postnatal weeks, and that there is a concomitant loss of retinal neurons in the inner nuclear layer. Although the loss of rods was detected at an earlier age during which time M- and S-opsin molecules were translocated to the cone nuclei; by 6 months all cones had also degenerated. Neuronal remodeling was also seen in the second-order neurons with horizontal cells sprouting processes proximally and dendritic retraction in rod-driven bipolar cells. Interestingly, the morphology of cone-driven bipolar cells were affected less by the disease process. The cellular structure of inner retinal neurons, i.e., ChAT amacrine cells, ganglion cells, and melanopsin-positive ganglion cells did not exhibit any gross changes of cell densities and appeared to be relatively unaffected by the massive photoreceptor degeneration in the distal retina. However, Muller cell processes began to express GFAP at their endfeet at p14, and it climbed progressively to the cell’s distal ends by 6 months. Our study indicates that FVB/N mouse provides a useful model with which to assess possible intervention strategies to arrest photoreceptor death in related diseases.
    Description: This study was supported by grants from the National Science Foundation (NSF, IOS-1021646, WS) and the National Eye Institute (NEI, EY 14161, WS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 11 (2016): e0146977, doi:10.1371/journal.pone.0146977 .
    Description: The article reports the radiocarbon investigation of Anzapalivoro, the largest za baobab (Adansonia za) specimen of Madagascar and of another za, namely the Big cistern baobab. Several wood samples collected from the large inner cavity and from the outer part/exterior of the tree were investigated by AMS (accelerator mass spectrometry) radiocarbon dating. For samples collected from the cavity walls, the age values increase with the distance into the wood up to a point of maximum age, after which the values decrease toward the outer part. This anomaly of age sequences indicates that the inner cavity of Anzapalivoro is a false cavity, practically an empty space between several fused stems disposed in a ring-shaped structure. The radiocarbon date of the oldest sample was 780 ± 30 bp, which corresponds to a calibrated age of around 735 yr. Dating results indicate that Anzapalivoro has a closed ring-shaped structure, which consists of 5 fused stems that close a false cavity. The oldest part of the biggest za baobab has a calculated age of 900 years. We also disclose results of the investigation of a second za baobab, the Big cistern baobab, which was hollowed out for water storage. This specimen, which consists of 4 fused stems, was found to be around 260 years old.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2022-05-25
    Description: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The definitive version was published in PLoS One 11 (2016): e0154208, doi: 10.1371/journal.pone.0154208
    Description: Some species of butterflyfish have had preyed upon corals for millions of years, yet the mechanism of butterflyfish specialized coral feeding strategy remains poorly understood. Certain butterflyfish have the ability to feed on allelochemically rich soft corals, e.g. Sinularia maxima. Cytochrome P450 (CYP) is the predominant enzyme system responsible for the detoxification of dietary allelochemicals. CYP2-like and CYP3A-like content have been associated with butterflyfish that preferentially consumes allelochemically rich soft corals. To investigate the role of butterflyfish CYP2 and CYP3A enzymes in dietary preference, we conducted oral feeding experiments using homogenates of S. maxima and a toxin isolated from the coral in four species of butterflyfish with different feeding strategies. After oral exposure to the S. maxima toxin 5-episinulaptolide (5ESL), which is not normally encountered in the Hawaiian butterflyfish diet, an endemic specialist, Chaetodon multicinctus experienced 100% mortality compared to a generalist, Chaetodon auriga, which had significantly more (3–6 fold higher) CYP3A-like basal content and catalytic activity. The specialist, Chaetodon unimaculatus, which preferentially feed on S. maxima in Guam, but not in Hawaii, had 100% survival, a significant induction of 8–12 fold CYP3A-like content, and an increased ability (2-fold) to metabolize 5ESL over other species. Computer modeling data of CYP3A4 with 5ESL were consistent with microsomal transformation of 5ESL to a C15-16 epoxide from livers of C. unimaculatus. Epoxide formation correlated with CYP3A-like content, catalytic activity, induction, and NADPH-dependent metabolism of 5ESL. These results suggest a potentially important role for the CYP3A family in butterflyfish-coral diet selection through allelochemical detoxification.
    Description: This work received support from the following sources: Resource Allocation Program of the Agricultural Research Station for UCR to DS; Summer funding by Hilda and George Liebig Environmental Sciences Summer Fellowship and travel grant Albert March Environmental Sciences Scholarship from the University of California, Riverside; and the Chemistry and DMPK CORE of COBRE, P20GM104932 from the National Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH) supported the chemistry studies.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2022-05-25
    Description: This is an open access article, free of all copyright. The definitive version was published in PLoS ONE 11 (2016): e0164979, doi: 10.1371/journal.pone.0164979.
    Description: Understanding and managing dynamic coastal landscapes for beach-dependent species requires biological and geological data across the range of relevant environments and habitats. It is difficult to acquire such information; data often have limited focus due to resource constraints, are collected by non-specialists, or lack observational uniformity. We developed an open-source smartphone application called iPlover that addresses these difficulties in collecting biogeomorphic information at piping plover (Charadrius melodus) nest sites on coastal beaches. This paper describes iPlover development and evaluates data quality and utility following two years of collection (n = 1799 data points over 1500 km of coast between Maine and North Carolina, USA). We found strong agreement between field user and expert assessments and high model skill when data were used for habitat suitability prediction. Methods used here to develop and deploy a distributed data collection system have broad applicability to interdisciplinary environmental monitoring and modeling.
    Description: This work was supported by the North Atlantic Landscape Conservation Cooperative through the U.S. Department of the Interior Hurricane Sandy recovery program under the Disaster Relief Appropriations Act of 2013, and the U.S. Geological Survey Coastal and Marine Geology Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2022-05-25
    Description: The work is made available under the Creative Commons CCO public domain dedication.. The definitive version was published in PLoS Biology 16 (2018): e2006333, doi:10.1371/journal.pbio.2006333.
    Description: Our current understanding of biology is heavily based on a small number of genetically tractable model organisms. Most eukaryotic phyla lack such experimental models, and this limits our ability to explore the molecular mechanisms that ultimately define their biology, ecology, and diversity. In particular, marine protists suffer from a paucity of model organisms despite playing critical roles in global nutrient cycles, food webs, and climate. To address this deficit, an initiative was launched in 2015 to foster the development of ecologically and taxonomically diverse marine protist genetic models. The development of new models faces many barriers, some technical and others institutional, and this often discourages the risky, long-term effort that may be required. To lower these barriers and tackle the complexity of this effort, a highly collaborative community-based approach was taken. Herein, we describe this approach, the advances achieved, and the lessons learned by participants in this novel community-based model for research.
    Description: The research efforts, connections, and collaborations described in this paper and protocols.io (https://www.protocols.io/) were supported by the Gordon and Betty Moore Foundation’s Marine Microbiology Initiative.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2020-02-27
    Description: The concept of multi-use of the sea has gained popularity in recent years as a result of ocean space (coastal areas and regions with relatively small sea space in particular) becoming increasingly crowded due to the development of the maritime economy. Competing claims for space can be a source of conflict, however this may also lead to mutual benefits for different users when sustainable combinations are sought. Despite increasing European-wide efforts, on-the-ground knowledge and practice of multi-use are still limited. Therefore, with the aim of investigating opportunities for multi-use development in the European seas, 10 case studies were selected, involving different site-specific contexts. This study analyses the characteristics and development potential for ocean multi-use, integrating results from desk analysis and stakeholder perceptions from different sectors in each of the case study locations. Similarities and differences between various combinations of sea uses are also identified. The results show a high heterogeneity of multi-use opportunities between case studies, with a range of combinations identified. The investigated combinations of maritime uses share an overall balance between factors promoting (drivers) and hindering (barriers) multi-use development. Based on stakeholder opinions, expected benefits (added values) of multi-use implementation outweigh potential negative impacts. Management actions are also proposed to further exploit multi-use potential at a local, regional (sub-national) and national levels.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Pathogens 5 (2009): e1000261, doi:10.1371/journal.ppat.1000261.
    Description: Enterocytozoon bieneusi is the most common microsporidian associated with human disease, particularly in the immunocompromised population. In the setting of HIV infection, it is associated with diarrhea and wasting syndrome. Like all microsporidia, E. bieneusi is an obligate, intracellular parasite, but unlike others, it is in direct contact with the host cell cytoplasm. Studies of E. bieneusi have been greatly limited due to the absence of genomic data and lack of a robust cultivation system. Here, we present the first large-scale genomic dataset for E. bieneusi. Approximately 3.86 Mb of unique sequence was generated by paired end Sanger sequencing, representing about 64% of the estimated 6 Mb genome. A total of 3,804 genes were identified in E. bieneusi, of which 1,702 encode proteins with assigned functions. Of these, 653 are homologs of Encephalitozoon cuniculi proteins. Only one E. bieneusi protein with assigned function had no E. cuniculi homolog. The shared proteins were, in general, evenly distributed among the functional categories, with the exception of a dearth of genes encoding proteins associated with pathways for fatty acid and core carbon metabolism. Short intergenic regions, high gene density, and shortened protein-coding sequences were observed in the E. bieneusi genome, all traits consistent with genomic compaction. Our findings suggest that E. bieneusi is a likely model for extreme genome reduction and host dependence.
    Description: This research was supported by National Institutes of Health (NIH) grants R21 AI064118 (DEA) and R21 AI52792 (ST). HGM was supported in part by NIH contracts HHSN266200400041C and HHSN2662004037C (Bioinformatics Resource Centers) and by the G. Unger Vetlesen Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: image/tiff
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2022-05-26
    Description: This article is distributed under the terms of the Creative Commons Public Domain. The definitive version was published in PLoS One 6 (2011): e16153, doi:10.1371/journal.pone.0016153.
    Description: Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.
    Description: This work was funded by the National Science Foundation’s Antarctic Earth Sciences Program (ANT0636787 awarded to LFR and RGW) and a CenSeam minigrant (awarded to RGW), and RGW is supported by a SOEST Young Investigator Fellowship from the University of Hawaii at Manoa.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2022-05-26
    Description: This article is distributed under the terms of the Creative Commons Public Domain declaration. The definitive version was published in PLoS One 6 (2011): e17009, doi:10.1371/journal.pone.0017009.
    Description: Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.
    Description: The research reported here was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014-07-10988, N00014-07-11023, N00014-08-10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI-1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e29659, doi:10.1371/journal.pone.0029659.
    Description: Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival) and disease frequency (the number of annual epidemics per decade). In case of epidemics of high severity (i.e., causing 〉30% mortality of breeding females), more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.
    Description: The study was supported by the Canadian Wildlife Service-Environment Canada (http://www.ec.gc.ca/), Nunavut Wildlife Management Board (http:// www.nwmb.com/), Greenland Institute of Natural Resources (http://www.natur.gl/), Polar Continental Shelf Project (http://polar.nrcan.gc.ca/), Fonds Que´be´cois de la Recherche sur la Nature et les Technologies (http://www.fqrnt.gouv.qc.ca/), Canadian Network of Centres of Excellence ArcticNet (http://www.arcticnet.ulaval. ca/), Natural Sciences and Engineering Research Council of Canada (http://www.nserc-crsng.gc.ca/), and the Department of Indian Affairs and Northern Canada (http://www.ainc-inac.gc.ca/).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2022-05-26
    Description: This is an open-access article, free of all copyright. The definitive version was published in PLoS One 6(2011): e18046, doi:10.1371/journal.pone.0018046.
    Description: The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (〉70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.
    Description: Binu Shrestha was supported by a Fulbright scholarship from the United States Department of State. This project was funded by grant R01GM061834 from the National Institute of General Medical Sciences, contract N01-CO-12400 from the National Cancer Institute (NCI), and by the Intramural Research Program, NCI Center for Cancer Research, National Institutes of Health (NIH).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50221, doi:10.1371/journal.pone.0050221.
    Description: Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify additional immune therapeutic targets in patients with mRCC.
    Description: This work was supported by grants from the National Institutes of Health (RO1 CA5648, R21CA112761, P20RR016437, and P30CA023108).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2022-05-26
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e22965, doi:10.1371/journal.pone.0022965.
    Description: Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.
    Description: This work was supported by the National Institute of Environmental Health Sciences (1-P50-ES012742 to DMA and DLE), by the National Science Foundation through the Woods Hole Center for Oceans and Human Health (OCE-0430724), and by the ECOHAB program (NOAA Grant NA06NOS4780245).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e90815, doi:10.1371/journal.pone.0090815.
    Description: Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality.
    Description: This work was supported by the National Science Foundation grant OCE-0430724, and the National Institute of Environmental Health Sciences grant P0ES012742 to the Woods Hole Center for Ocean and Human Health. E. Halliday was partially supported by WHOI Academic Programs and grants from the WHOI Ocean Ventures Fund and the WHOI Coastal Ocean Institute.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e103536, doi:10.1371/journal.pone.0103536.
    Description: Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009–2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5–7 m total length with a sex ratio of approximately 1:1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean.
    Description: Financial support was provided in part by KAUST baseline research funds (to MLB), KAUST award nos. USA00002 and KSA 00011 (to SRT), and the United States National Science Foundation (OCE 0825148 to SRT and GBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e112379, doi:10.1575/1912/6845.
    Description: Increasing Transparent Exopolymer Particle (TEP) formation during diatom blooms as a result of elevated temperature and pCO2 have been suggested to result in enhanced aggregation and carbon flux, therewith potentially increasing the sequestration of carbon by the ocean. We present experimental results on TEP and aggregate formation by Thalassiosira weissflogii (diatom) in the presence or absence of bacteria under two temperature and three pCO2 scenarios. During the aggregation phase of the experiment TEP formation was elevated at the higher temperature (20°C vs. 15°C), as predicted. However, in contrast to expectations based on the established relationship between TEP and aggregation, aggregation rates and sinking velocity of aggregates were depressed in warmer treatments, especially under ocean acidification conditions. If our experimental findings can be extrapolated to natural conditions, they would imply a reduction in carbon flux and potentially reduced carbon sequestration after diatom blooms in the future ocean.
    Description: This work was supported by National Science Foundation grants OCE-0926711 & OCE-1041038 to UP and Helmholtz Graduate School for Polar and Marine Research and Jacobs University Bremen to SS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e83249, doi:10.1371/journal.pone.0083249.
    Description: Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark–human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a priority for future research.
    Description: Funding was provided by the the Agence Francaise de Développement (http://www.afd.fr), French Pacific Fund, the CRISP program (www.crisponline.info) and QLD Fisheries.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: video/mp4
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0136376, doi:10.1371/journal.pone.0136376.
    Description: Polar petroleum components enter marine environments through oil spills and natural seepages each year. Lately, they are receiving increased attention due to their potential toxicity to marine organisms and persistence in the environment. We conducted a laboratory experiment and employed state-of-the-art Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the polar petroleum components within two operationally-defined seawater fractions: the water-soluble fraction (WSF), which includes only water-soluble molecules, and the water-accommodated fraction (WAF), which includes WSF and microscopic oil droplets. Our results show that compounds with higher heteroatom (N, S, O) to carbon ratios (NSO:C) than the parent oil were selectively partitioned into seawater in both fractions, reflecting the influence of polarity on aqueous solubility. WAF and WSF were compositionally distinct, with unique distributions of compounds across a range of hydrophobicity. These compositional differences will likely result in disparate impacts on environmental health and organismal toxicity, and thus highlight the need to distinguish between these often-interchangeable terminologies in toxicology studies. We use an empirical model to estimate hydrophobicity character for individual molecules within these complex mixtures and provide an estimate of the potential environmental impacts of different crude oil components.
    Description: This study is funded by the Gulf of Mexico Research Initiative (GOMRI) Project # 161684 to Dr. Elizabeth B. Kujawinski.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0135381, doi:10.1371/journal.pone.0135381.
    Description: Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.
    Description: This research was supported by the Office of Naval Research Basic Research Challenge grant number N00014-10-0989 to TWC and RTH and a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship BB/L024667/1 to TJW. The authors gratefully acknowledge support from the Air Force Office of Scientific Research via grants numbered FA9550-09-0346 to RTH. and FA9550-12-1-0321 to TWC.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS 11 (2016): e0149998, doi:10.1371/journal.pone.0149998.
    Description: Individuals with cystic fibrosis (CF) often acquire chronic lung infections that lead to irreversible damage. We sought to examine regional variation in the microbial communities in the lungs of individuals with mild-to-moderate CF lung disease, to examine the relationship between the local microbiota and local damage, and to determine the relationships between microbiota in samples taken directly from the lung and the microbiota in spontaneously expectorated sputum. In this initial study, nine stable, adult CF patients with an FEV1〉50% underwent regional sampling of different lobes of the right lung by bronchoalveolar lavage (BAL) and protected brush (PB) sampling of mucus plugs. Sputum samples were obtained from six of the nine subjects immediately prior to the procedure. Microbial community analysis was performed on DNA extracted from these samples and the extent of damage in each lobe was quantified from a recent CT scan. The extent of damage observed in regions of the right lung did not correlate with specific microbial genera, levels of community diversity or composition, or bacterial genome copies per ml of BAL fluid. In all subjects, BAL fluid from different regions of the lung contained similar microbial communities. In eight out of nine subjects, PB samples from different regions of the lung were also similar in microbial community composition, and were similar to microbial communities in BAL fluid from the same lobe. Microbial communities in PB samples were more diverse than those in BAL samples, suggesting enrichment of some taxa in mucus plugs. To our knowledge, this study is the first to examine the microbiota in different regions of the CF lung in clinically stable individuals with mild-to-moderate CF-related lung disease.
    Description: Support from the Cystic Fibrosis Foundation Research Development Program (STANTO07R0) as a pilot grant to DAH and AA. Research reported in this publication was also supported by grants from the National Institutes of Health to DAH (R01 AI091702 to DAH) and the American Asthma Foundation Scholars Award and CFFT-ASHARE15A0 and R01HL122372 to AA and R01 HL074175 (BAS). The Dartmouth Lung Biology Center and CF Translational Research Core was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P30GM106394 and by the CFF RDP (CFRDP STANTO11R0).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS 11 (2016): e0150660, doi:10.1371/journal.pone.0150660.
    Description: Sperm whales are present in the Canary Islands year-round, suggesting that the archipelago is an important area for this species in the North Atlantic. However, the area experiences one of the highest reported rates of sperm whale ship-strike in the world. Here we investigate if the number of sperm whales found in the archipelago can sustain the current rate of ship-strike mortality. The results of this study may also have implications for offshore areas where concentrations of sperm whales may coincide with high densities of ship traffic, but where ship-strikes may be undocumented. The absolute abundance of sperm whales in an area of 52933 km2, covering the territorial waters of the Canary Islands, was estimated from 2668 km of acoustic line-transect survey using Distance sampling analysis. Data on sperm whale diving and acoustic behaviour, obtained from bio-logging, were used to calculate g(0) = 0.92, this is less than one because of occasional extended periods when whales do not echolocate. This resulted in an absolute abundance estimate of 224 sperm whales (95% log-normal CI 120–418) within the survey area. The recruitment capability of this number of whales, some 2.5 whales per year, is likely to be exceeded by the current ship-strike mortality rate. Furthermore, we found areas of higher whale density within the archipelago, many coincident with those previously described, suggesting that these are important habitats for females and immature animals inhabiting the archipelago. Some of these areas are crossed by active shipping lanes increasing the risk of ship-strikes. Given the philopatry in female sperm whales, replacement of impacted whales might be limited. Therefore, the application of mitigation measures to reduce the ship-strike mortality rate seems essential for the conservation of sperm whales in the Canary Islands.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS 11 (2016): e0151089, doi: 10.1371/journal.pone.0151089 .
    Description: The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc 〉2, FDR 〈 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.
    Description: This work was funded by the NIH NCRR supplement grant P41 RR001395-27S1 (J.W.H.), NSF DBI-1005378 “REU Site: Biological Discovery in Woods Hole”, faculty startup funds from the Office of Research at Oklahoma State University (W.C.), and the Mary Kay Foundation (A.S.B.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cochran, J. E. M., Braun, C. D., Cagua, E. F., Campbell, M. F., Hardenstine, R. S., Kattan, A., Priest, M. A., Sinclair-Taylor, T. H., Skomal, G. B., Sultan, S., Sun, L., Thorrold, S. R., & Berumen, M. L. Multi-method assessment of whale shark (Rhincodon typus) residency, distribution, and dispersal behavior at an aggregation site in the Red Sea. Plos One, 14(9), (2019): e0222285, doi:10.1371/journal.pone.0222285.
    Description: Whale sharks (Rhincodon typus) are typically dispersed throughout their circumtropical range, but the species is also known to aggregate in specific coastal areas. Accurate site descriptions associated with these aggregations are essential for the conservation of R. typus, an Endangered species. Although aggregations have become valuable hubs for research, most site descriptions rely heavily on sightings data. In the present study, visual census, passive acoustic monitoring, and long range satellite telemetry were combined to track the movements of R. typus from Shib Habil, a reef-associated aggregation site in the Red Sea. An array of 63 receiver stations was used to record the presence of 84 acoustically tagged sharks (35 females, 37 males, 12 undetermined) from April 2010 to May 2016. Over the same period, identification photos were taken for 76 of these tagged individuals and 38 were fitted with satellite transmitters. In total of 37,461 acoustic detections, 210 visual encounters, and 33 satellite tracks were analyzed to describe the sharks’ movement ecology. The results demonstrate that the aggregation is seasonal, mostly concentrated on the exposed side of Shib Habil, and seems to attract sharks of both sexes in roughly equal numbers. The combined methodologies also tracked 15 interannual homing-migrations, demonstrating that many sharks leave the area before returning in later years. When compared to acoustic studies from other aggregations, these results demonstrate that R. typus exhibits diverse, site-specific ecologies across its range. Sightings-independent data from acoustic telemetry and other sources are an effective means of validating more common visual surveys.
    Description: Financial support was provided in part by KAUST baseline research funds (to MLB), KAUST award nos. USA00002 and KSA 00011 (to SRT), and the U.S. National Science Foundation (OCE 0825148 to SRT and GBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weizman, E. N., Tannenbaum, M., Tarrant, A. M., Hakim, O., & Levy, O. Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis. Plos Genetics, 15(11), (2019): e1008397, doi: 10.1371/journal.pgen.1008397.
    Description: In animals, circadian rhythms are driven by oscillations in transcription, translation, and proteasomal degradation of highly conserved genes, resulting in diel cycles in the expression of numerous clock-regulated genes. Transcription is largely regulated through the binding of transcription factors to cis-regulatory elements within accessible regions of the chromatin. Chromatin remodeling is linked to circadian regulation in mammals, but it is unknown whether cycles in chromatin accessibility are a general feature of clock-regulated genes throughout evolution. To assess this, we applied an ATAC-seq approach using Nematostella vectensis, grown under two separate light regimes (light:dark (LD) and constant darkness (DD)). Based on previously identified N. vectensis circadian genes, our results show the coupling of chromatin accessibility and circadian transcription rhythmicity under LD conditions. Out of 180 known circadian genes, we were able to list 139 gene promoters that were highly accessible compared to common promoters. Furthermore, under LD conditions, we identified 259 active enhancers as opposed to 333 active enhancers under DD conditions, with 171 enhancers shared between the two treatments. The development of a highly reproducible ATAC-seq protocol integrated with published RNA-seq and ChIP-seq databases revealed the enrichment of transcription factor binding sites (such as C/EBP, homeobox, and MYB), which have not been previously associated with circadian signaling in cnidarians. These results provide new insight into the regulation of cnidarian circadian machinery. Broadly speaking, this supports the notion that the association between chromatin remodeling and circadian regulation arose early in animal evolution as reflected in this non-bilaterian lineage.
    Description: The research leading for this paper was funded by the Moore Foundation (https://www.moore.org), “Unwinding the Circadian Clock in a Sea Anemone” (Grant #4598) to A.T and O.L. The founders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Planes, S., Allemand, D., Agostini, S., Banaigs, B., Boissin, E., Boss, E., Bourdin, G., Bowler, C., Douville, E., Flores, J. M., Forcioli, D., Furla, P., Galand, P. E., Ghiglione, J. F., Gilson, E., Lombard, F., Moulin, C., Pesant, S., Poulain, J., Reynaud, S., Romac, S., Sullivan, M. B., Sunagawa, S., Thomas, O. P., Trouble, R., de Vargas, C., Thurber, R. V., Voolstra, C. R., Wincker, P., Zoccola, D., the Tara Pacific Consortium. The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean. Plos Biology, 17(9),(2019): e3000483, doi: 10.1371/journal.pbio.3000483.
    Description: Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects—in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the “-omics” complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016–2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east–west transect from Panama to Papua New Guinea and a south–north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.
    Description: We are keen to thank the commitment of the people and the following institutions for their financial and scientific support that made this singular expedition possible: CNRS, PSL, CSM, EPHE, Genoscope/CEA, Inserm, Université Cote d’Azur, ANR, agnès b., UNESCO-IOC, the Veolia Environment Foundation, Région Bretagne, Serge Ferrari, Billerudkorsnas, Amerisource Bergen Company, Lorient Agglomeration, Oceans by Disney, the Prince Albert II de Monaco Foundation, L’Oréal, Biotherm, France Collectivités, Kankyo Station, Fonds Français pour l’Environnement Mondial (FFEM), Etienne BOURGOIS, and the Tara Ocean Foundation teams and crew. Tara Pacific would not exist without the continuous support of the participating institutes. This study has been conducted using E.U. Copernicus Marine Service Information and Mercator Ocean products. We acknowledged funding from the Investissement d’avenir projects France Génomique (ANR-10-INBS-09) and OCEANOMICS (ANR-11-BTBR-0008). RVT was funded by a Dimensions of Biodiversity NSF grant (#1442306) for this work. SS is supported by the ETH Zurich and Helmut Horten Foundation. FL is supported by Sorbonne Université, Institut Universitaire de France, and the Fondation CA-PCA. Finally, we thank the ANR for funding the project CORALGENE, which will support the work the Tara Pacific program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hopkinson, B. M., King, A. C., Owen, D. P., Johnson-Roberson, M., Long, M. H., & Bhandarkar, S. M. Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks. PLoS One, 15(3), (2020): e0230671, doi: 10.1371/journal.pone.0230671.
    Description: Coral reefs are biologically diverse and structurally complex ecosystems, which have been severally affected by human actions. Consequently, there is a need for rapid ecological assessment of coral reefs, but current approaches require time consuming manual analysis, either during a dive survey or on images collected during a survey. Reef structural complexity is essential for ecological function but is challenging to measure and often relegated to simple metrics such as rugosity. Recent advances in computer vision and machine learning offer the potential to alleviate some of these limitations. We developed an approach to automatically classify 3D reconstructions of reef sections and assessed the accuracy of this approach. 3D reconstructions of reef sections were generated using commercial Structure-from-Motion software with images extracted from video surveys. To generate a 3D classified map, locations on the 3D reconstruction were mapped back into the original images to extract multiple views of the location. Several approaches were tested to merge information from multiple views of a point into a single classification, all of which used convolutional neural networks to classify or extract features from the images, but differ in the strategy employed for merging information. Approaches to merging information entailed voting, probability averaging, and a learned neural-network layer. All approaches performed similarly achieving overall classification accuracies of ~96% and 〉90% accuracy on most classes. With this high classification accuracy, these approaches are suitable for many ecological applications.
    Description: This study was funded by grants from the Alfred P. Sloan Foundation (BMH, BR2014-049; https://sloan.org), and the National Science Foundation (MHL, OCE-1657727; https://www.nsf.gov). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published inWeber, L., & Apprill, A. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS One, 15(3), (2020): e0229442, doi: 10.1371/journal.pone.0229442.
    Description: Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sampled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and surface seawater (sampled 1 m from the seawater surface). At all time points and locations, we quantified abundances of microbial cells, sequenced small subunit rRNA genes of bacterial and archaeal communities, and measured inorganic nutrient concentrations. Prochlorococcus and Synechococcus cells were consistently elevated at night compared to day and these abundances changed over time, corresponding with temperature, nitrite, and silicate concentrations. During the day, bacterial and archaeal alpha diversity was significantly higher in reef-depth and near-coral seawater compared to the surface seawater, signifying that the reef influences the diversity of the seawater microorganisms. At night, alpha diversity decreased across all samples, suggesting that photosynthesis may favor a more taxonomically diverse community. While Prochlorococcus exhibited consistent temporal rhythmicity, additional taxa were enriched in reef seawater at night compared to day or in reef-depth compared to surface seawater based on their normalized sequence counts. There were some significant differences in nutrient concentrations and cell abundances between reef-depth and near-coral seawater but no clear trends. This study demonstrates that temporal variation supersedes small-scale spatial variation in proximity to corals in reef seawater microbial communities. As coral reefs continue to change in benthic composition worldwide, monitoring microbial composition in response to temporal changes and environmental fluctuations will help discern normal variability from longer lasting changes attributed to anthropogenic stressors and global climate change.
    Description: This work was supported by a National Science Foundation (NSF; https://www.nsf.gov/) Graduate Research Fellowship award to L.Weber. This research was also supported by NSF award OCE-1536782 to A. Mooney, J. Llopiz, and A. Apprill and NSF award OCE-1736288 to A. Apprill. Additionally, this work was supported by the NOAA Cooperative Institutes award NA19OAR4320074 to A.A. and E. Kujawinski and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research to A.A.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Keya, J. J., Kudoh, H., Kabir, A. M. R., Inoue, D., Miyamoto, N., Tani, T., Kakugo, A., & Shikinaka, K. Radial alignment of microtubules through tubulin polymerization in an evaporating droplet. Plos One, 15(4), (2020): e0231352, doi:10.1371/journal.pone.0231352.
    Description: We report the formation of spherulites from droplets of highly concentrated tubulin solution via nucleation and subsequent polymerization to microtubules (MTs) under water evaporation by heating. Radial alignment of MTs in the spherulites was confirmed by the optical properties of the spherulites observed using polarized optical microscopy and fluorescence microscopy. Temperature and concentration of tubulins were found as important parameters to control the spherulite pattern formation of MTs where evaporation plays a significant role. The alignment of MTs was regulated reversibly by temperature induced polymerization and depolymerization of tubulins. The formation of the MTs patterns was also confirmed at the molecular level from the small angle X-ray measurements. This work provides a simple method for obtaining radially aligned arrays of MTs.
    Description: Fund receiver: Akira Kakugo Grant-in-Aid for Scientific Research on Innovative Areas (Grant Nos. JP24104004 and 18H05423) and a Grant-in-Aid for Scientific Research (A) (Grant No. 18H03673) from kaken. NO - The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-10-14
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Houskeeper, H. F., Rosenthal, I. S., Cavanaugh, K. C., Pawlak, C., Trouille, L., Byrnes, J. E. K., Bell, T. W., & Cavanaugh, K. C. Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas). Plos One, 17(1), (2022): e0257933, https://doi.org/10.1371/journal.pone.0257933.
    Description: Giant kelp populations that support productive and diverse coastal ecosystems at temperate and subpolar latitudes of both hemispheres are vulnerable to changing climate conditions as well as direct human impacts. Observations of giant kelp forests are spatially and temporally uneven, with disproportionate coverage in the northern hemisphere, despite the size and comparable density of southern hemisphere kelp forests. Satellite imagery enables the mapping of existing and historical giant kelp populations in understudied regions, but automating the detection of giant kelp using satellite imagery requires approaches that are robust to the optical complexity of the shallow, nearshore environment. We present and compare two approaches for automating the detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite imagery classifications and another based on a decision tree paired with a spectral unmixing algorithm (automated using Google Earth Engine). Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive giant kelp ecosystems. The performance of each method is evaluated by comparing the automated classifications with a subset of expert-annotated imagery (8 images spanning the majority of our continuous timeseries, cumulatively covering over 2,700 km of coastline, and including all relevant sensors). Using the remote sensing approaches evaluated herein, we present the first continuous timeseries of giant kelp observations in the FLK region using Landsat imagery spanning over three decades. We do not detect evidence of long-term change in the FLK region, although we observe a recent decline in total canopy area from 2017–2021. Using a nitrate model based on nearby ocean state measurements obtained from ships and incorporating satellite sea surface temperature products, we find that the area of giant kelp forests in the FLK region is positively correlated with the nitrate content observed during the prior year. Our results indicate that giant kelp classifications using citizen science are approximately consistent with classifications based on a state-of-the-art automated spectral approach. Despite differences in accuracy and sensitivity, both approaches find high interannual variability that impedes the detection of potential long-term changes in giant kelp canopy area, although recent canopy area declines are notable and should continue to be monitored carefully.
    Description: This work was funded by the National Aeronautics and Space Administration as part of the Citizen Science for Earth Systems Program (https://earthdata.nasa.gov/esds/competitive-programs/csesp) with grant #80NSSC18M0103 (awarded to JEKB), which also provided salary to HFH, and by the National Science Foundation through the Santa Barbara Coastal Long-Term Environmental Research (https://sbclter.msi.ucsb.edu) program with grants #OCE 0620276 and 1232779. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brandt, P. D., Sturzenegger Varvayanis, S., Baas, T., Bolgioni, A. F., Alder, J., Petrie, K. A., Dominguez, I., Brown, A. M., Stayart, C. A., Singh, H., Van Wart, A., Chow, C. S., Mathur, A., Schreiber, B. M., Fruman, D. A., Bowden, B., Wiesen, C. A., Golightly, Y. M., Holmquist, C. E., Arneman, D., Hall, J. D., Hyman, L. E., Gould, K. L., Chalkley, R., Brennwald, P. J., Layton, R. L. A cross-institutional analysis of the effects of broadening trainee professional development on research productivity. Plos Biology, 19(7), (2021): e3000956, https://doi.org/10.1371/journal.pbio.3000956.
    Description: PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce.
    Description: Funding sources included the Common Fund NIH Director’s Biomedical Research Workforce Innovation Broadening Experiences in Scientific Training (BEST) Award. The following institutional NIH BEST awards (alphabetical by institution) included: DP7OD020322 (Boston University; AFB, ID, BMS, LEH); DP7OD020316 (University of Chicago; CAS); DP7OD018425 (Cornell University; SSV); DP7OD018428 (Virginia Polytechnic Institute; AVW, BB); DP7OD020314 (Rutgers University; JA); DP7OD020315 (University of Rochester; TB); DP7OD018423 (Vanderbilt University; KAP, AMB, KLG, RC); DP7OD020321 (University of California, Irvine; HS, DAF); DP7OD020317 (University of North Carolina, Chapel Hill; PDB, PJB, RLL); DP7 OD018427 (Wayne State University; CSC, AM). National Institutes of Health (NIH) General Medical Sciences - Science of Science Policy Approach to Analyzing and Innovating the Biomedical Research Enterprise (SCISIPBIO) Award (GM-19-011) - 1R01GM140282-01 (University of North Carolina at Chapel Hill; RLL, PDB, PJB).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-05-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Castellote, M., Mooney, A., Andrews, R., Deruiter, S., Lee, W.-J., Ferguson, M., & Wade, P. Beluga whale (Delphinapterus leucas) acoustic foraging behavior and applications for long term monitoring. Plos One, 16(11), (2021): e0260485, https://doi.org/10.1371/journal.pone.0260485.
    Description: Cook Inlet, Alaska, is home to an endangered and declining population of 279 belugas (Delphinapterus leucas). Recovery efforts highlight a paucity of basic ecological knowledge, impeding the correct assessment of threats and the development of recovery actions. In particular, information on diet and foraging habitat is very limited for this population. Passive acoustic monitoring has proven to be an efficient approach to monitor beluga distribution and seasonal occurrence. Identifying acoustic foraging behavior could help address the current gap in information on diet and foraging habitat. To address this conservation challenge, eight belugas from a comparative, healthy population in Bristol Bay, Alaska, were instrumented with a multi-sensor tag (DTAG), a satellite tag, and a stomach temperature transmitter in August 2014 and May 2016. DTAG deployments provided 129.6 hours of data including foraging and social behavioral states. A total of 68 echolocation click trains ending in terminal buzzes were identified during successful prey chasing and capture, as well as during social interactions. Of these, 37 click trains were successfully processed to measure inter-click intervals (ICI) and ICI trend in their buzzing section. Terminal buzzes with short ICI (minimum ICI 〈8.98 ms) and consistently decreasing ICI trend (ICI increment range 〈1.49 ms) were exclusively associated with feeding behavior. This dual metric was applied to acoustic data from one acoustic mooring within the Cook Inlet beluga critical habitat as an example of the application of detecting feeding in long-term passive acoustic monitoring data. This approach allowed description of the relationship between beluga presence, feeding occurrence, and the timing of spawning runs by different species of anadromous fish. Results reflected a clear preference for the Susitna River delta during eulachon (Thaleichthys pacificus), Chinook (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha), and coho (Oncorhynchus kisutch) salmon spawning run periods, with increased feeding occurrence at the peak of the Chinook and pink salmon runs.
    Description: Project funding was provided by Georgia Aquarium, the Marine Mammal Laboratory of the Alaska Fisheries Science Center (MML/AFSC). Tagging was funded by the NOAA Fisheries Office of Science and Technology’s Ocean Acoustics Program. DTAG data analysis was funded by the U.S. Marine Mammal Commission grant #16-239. Funding for collecting and analyzing Cook Inlet beluga acoustic data in Susitna Delta was provided by the National Marine Fisheries Service Section 6 Office to the Alaska Department of Fish and Game. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES), University of Washington, under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2021-1145.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ashjian, C. J., Okkonen, S. R., Campbell, R. G., & Alatalo, P. Lingering Chukchi Sea sea ice and Chukchi Sea mean winds influence population age structure of euphausiids (krill) found in the bowhead whale feeding hotspot near Pt. Barrow, Alaska. Plos One, 16(7), (2021): e0254418, https://doi.org/10.1371/journal.pone.0254418.
    Description: Interannual variability in euphausiid (krill) abundance and population structure and associations of those measures with environmental drivers were investigated in an 11-year study conducted in late August–early September 2005–2015 in offshelf waters (bottom depth 〉 40 m) in Barrow Canyon and the Beaufort Sea just downstream of Distributed Biological Observatory site 5 (DBO5) near Pt. Barrow, Alaska. Statistically-significant positive correlations were observed among krill population structure (proportion of juveniles and adults), the volume of Late Season Melt Water (LMW), and late-spring Chukchi Sea sea ice extent. High proportions of juvenile and adult krill were seen in years with larger volumes of LMW and greater spring sea ice extents (2006, 2009, 2012–2014) while the converse, high proportions of furcilia, were seen in years with smaller volumes of LMW and lower spring sea ice extent (2005, 2007, 2010, 2011, 2015). These different life stage, sea ice and water mass regimes represent integrated advective responses to mean fall and/or spring Chukchi Sea winds, driven by prevailing atmospheric pressure distributions in the two sets of years. In years with high proportions of juveniles and adults, late-spring and preceding-fall winds were weak and variable while in years with high proportions of furcilia, late-spring and preceding-fall winds were strong, easterly and consistent. The interaction of krill life history with yearly differences in the northward transports of krill and water masses along with sea ice retreat determines the population structure of late-summer krill populations in the DBO5 region near Pt. Barrow. Years with higher proportions of mature krill may provide larger prey to the Pt. Barrow area bowhead whale prey hotspot. The characteristics of prey near Pt. Barrow is dependent on krill abundance and size, large-scale environmental forcing, and interannual variability in recruitment success of krill in the Bering Sea.
    Description: This research was supported by the National Science Foundation through grants PLR-1023331 (CJA), OPP-0436131 (CJA), PLR-1022139 (RGC), OPP-0436110 (RGC), PLR-1023446 (SRO), and OPP-043166 (SRO), the National Oceanic and Atmospheric Administration (NOAA) under cooperative agreement NA08OAR4320751 with the University of Alaska (SRO) and cooperative agreements NA17RJ1223 and NA09OAR4320129 with the Woods Hole Oceanographic Institution (CJA), the Bureau of Ocean Energy Management through Interagency Agreement 0106RU39923/M08PG20021 between the National Marine Fisheries Service and MMS/BOEM (CJA, RGC, SRO) and through the National Oceanographic Partnership Program award number N00014-08-1-0311 from the Office of Naval Research to the Woods Hole Oceanographic Institution (CJA, SRO, RGC). Additional support was provided by the Coastal Marine Institute at the University of Alaska (SRO, RGC) and the James M. and Ruth P. Clark Arctic Research Initiative Fund at the Woods Hole Oceanographic Institution (CJA). The participation of the K-12 teachers was supported by the National Science Foundation through the ARMADA program at the University of Rhode Island (2005, 2006) and through the POLARTrec program at the Arctic Research Consortium of the United States (2012).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-05-26
    Description: © The Authors, 2007. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 2 (2007): e667, doi:10.1371/journal.pone.0000667.
    Description: For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. We have used both cultivation and cultivation-independent techniques to study Fe-rich microbial mats associated with hydrothermal venting at Loihi Seamount, a submarine volcano. Using gradient enrichment techniques, two iron-oxidizing bacteria, strains PV-1 and JV-1, were isolated. Chemolithotrophic growth was observed under microaerobic conditions; Fe(II) and Fe0 were the only energy sources that supported growth. Both strains produced filamentous stalk-like structures composed of multiple nanometer sized fibrils of Fe-oxyhydroxide. These were consistent with mineralogical structures found in the iron mats. Phylogenetic analysis of the small subunit (SSU) rRNA gene demonstrated that strains PV-1 and JV-1 were identical and formed a monophyletic group deeply rooted within the Proteobacteria. The most similar sequence (85.3% similarity) from a cultivated isolate came from Methylophaga marina. Phylogenetic analysis of the RecA and GyrB protein sequences confirmed that these strains are distantly related to other members of the Proteobacteria. A cultivation-independent analysis of the SSU rRNA gene by terminal-restriction fragment (T-RF) profiling showed that this phylotype was most common in a variety of microbial mats collected at different times and locations at Loihi. On the basis of phylogenetic and physiological data, it is proposed that isolate PV-1T ( = 1ATCC BAA-1019: JCM 14766) represents the type strain of a novel species in a new genus, Mariprofundus ferrooxydans gen. nov., sp. nov. Furthermore, the strain is the first cultured representative of a new candidatus class of the Proteobacteria that is widely distributed in deep-sea environments, Candidatus ζ (zeta)-Proteobacteria cl. nov.
    Description: Funding was provided to DE and CLM by the National Science Foundation (0348330) and to DE through the NASA Astobiology Institute.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-05-26
    Description: © The Authors, 2008. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 3 (2008): e2581, doi:10.1371/journal.pone.0002581.
    Description: Birdsong is a widely used model for vocal learning and human speech, which exhibits high temporal and acoustic diversity. Rapid acoustic modulations are thought to arise from the vocal organ, the syrinx, by passive interactions between the two independent sound generators or intrinsic nonlinear dynamics of sound generating structures. Additionally, direct neuromuscular control could produce such rapid and precisely timed acoustic features if syringeal muscles exhibit rare superfast muscle contractile kinetics. However, no direct evidence exists that avian vocal muscles can produce modulations at such high rates. Here, we show that 1) syringeal muscles are active in phase with sound modulations during song over 200 Hz, 2) direct stimulation of the muscles in situ produces sound modulations at the frequency observed during singing, and that 3) syringeal muscles produce mechanical work at the required frequencies and up to 250 Hz in vitro. The twitch kinematics of these so-called superfast muscles are the fastest measured in any vertebrate muscle. Superfast vocal muscles enable birds to directly control the generation of many observed rapid acoustic changes and to actuate the millisecond precision of neural activity into precise temporal vocal control. Furthermore, birds now join the list of vertebrate classes in which superfast muscle kinetics evolved independently for acoustic communication.
    Description: This study was funded by NIH DC04390 and DC06876 to FG, and NIH AR38404-20 and NIH AR46125 to LCR. The work was also supported by a grant from the Pennsylvania Department of Health to LCR.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-05-26
    Description: © The Authors, 2007. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 2 (2007): e671, doi:10.1371/journal.pone.0000671.
    Description: Rotifers are among the most common non-arthropod animals and are the most experimentally tractable members of the basal assemblage of metazoan phyla known as Gnathifera. The monogonont rotifer Brachionus plicatilis is a developing model system for ecotoxicology, aquatic ecology, cryptic speciation, and the evolution of sex, and is an important food source for finfish aquaculture. However, basic knowledge of the genome and transcriptome of any rotifer species has been lacking. We generated and partially sequenced a cDNA library from B. plicatilis and constructed a database of over 2300 expressed sequence tags corresponding to more than 450 transcripts. About 20% of the transcripts had no significant similarity to database sequences by BLAST; most of these contained open reading frames of significant length but few had recognized Pfam motifs. Sixteen transcripts accounted for 25% of the ESTs; four of these had no significant similarity to BLAST or Pfam databases. Putative up- and downstream untranslated regions are relatively short and AT rich. In contrast to bdelloid rotifers, there was no evidence of a conserved trans-spliced leader sequence among the transcripts and most genes were single-copy. Despite the small size of this EST project it revealed several important features of the rotifer transcriptome and of individual monogonont genes. Because there is little genomic data for Gnathifera, the transcripts we found with no known function may represent genes that are species-, class-, phylum- or even superphylum-specific; the fact that some are among the most highly expressed indicates their importance. The absence of trans-spliced leader exons in this monogonont species contrasts with their abundance in bdelloid rotifers and indicates that the presence of this phenomenon can vary at the subphylum level. Our EST database provides a relatively large quantity of transcript-level data for B. plicatilis, and more generally of rotifers and other gnathiferan phyla, and can be browsed and searched at gmod.mbl.edu.
    Description: This research was supported by the Nagasaki Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence, Japan Science and Technology Agency to KS, YT, YS and AH, and US NSF grants EF-0412674 and MCB-0544199 to DMW.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e39971, doi:10.1371/journal.pone.0039971.
    Description: Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing 〉80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e59284, doi:10.1371/journal.pone.0059284.
    Description: Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.
    Description: This study was made possible through the logistical and field support of the Bangladesh Cetacean Diversity Project of the Wildlife Conservation Society, and funded by frame grants from the Danish Natural Science Foundation to PTM. FHJ was supported by the PhD School of Aquatic Sciences, Denmark, and is currently funded by a postdoctoral fellowship from the Danish Council for Independent Research | Natural Sciences. VMJ was supported by a fellowship of the Wissenschaftskolleg Berlin. PTM was supported by frame grants from the Danish Natural Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e92277, doi:10.1371/journal.pone.0092277.
    Description: Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF). The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS) algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs) fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina) tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to “true” GPS locations. Data on 6 fin whales (Balaenoptera physalus) were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM) fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were 〈5 km from the corresponding interpolated GPS position. Uncertainty in KF model estimates (5.6±5.6 km) was nearly half that of LS estimates (11.6±8.4 km). Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales’ behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates.
    Description: This research was primarily funded by Fundação para a Ciência e a Tecnologia (FCT), Fundo Regional da Ciência, Tecnologia (FRCT), through research projects TRACE-PTDC/MAR/74071/2006 and MAPCET-M2.1.2/F/012/2011 [FEDER], the Competitiveness Factors Operational (COMPETE), QREN European Social Fund, and Proconvergencia Açores/EU Program]. We acknowledge funds provided by FCT to LARSyS Associated Laboratory and IMAR-University of the Azores/the Thematic Area D & E of the Strategic Project PEst-OE/EEI/LA0009/2011–1012 and 2013–2014 (OE & Compete) and by the FRCT - Government of the Azores pluriannual funding. MAS was supported by an FCT postdoctoral grant (SFRH/BPD/29841/2006) and is currently supported by POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education through an FCT Investigator grant. RP was supported by an FCT doctoral grant (SFRH/BD/41192/2007) and by the research grant from the Azores Regional Fund for Science and Technology (M3.1.5/F/115/2012). IJ was supported by the Natural Sciences and Engineering Research Council (NSERC) and the Canada Foundation for Innovation (CFI) through their support of the Ocean Tracking Network. DJFR is funded by the United Kingdom Department of Energy and Climate Change as part of their Offshore Energy Strategic Environmental Assessment program. DT is funded by Natural Environment Research Council and Marine Scotland.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e94249, doi:10.1371/journal.pone.0094249.
    Description: The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity.
    Description: This work was partially funded by an Emerging Frontiers in Research and Innovation – Multicellular and Inter-kingdom Signaling (EFRI-MIKS) grant awarded by the US National Science Foundation to Joerg Graf and NIH RO1 GM095390 to JG and HGM.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-05-26
    Description: This is an open-access article, free of all copyright. The definitive version was published in PLoS One 9 (2014): e101658, doi:10.1371/journal.pone.0101658.
    Description: Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico.
    Description: This project was funded by Bureau of Ocean Energy Management (BOEM) Contract M10PC00112 to Leidos, Inc. with subcontract to ASB (www.boem.gov).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-05-26
    Description: This article is distributed under the terms of the Creative Commons public domain dedication. The definitive version was published in PLoS One 11 (2016): e0158495, doi:10.1371/journal.pone.0158495.
    Description: The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image.
    Description: This work was supported by Grant 2007-3- 13 from the Alfred P. Sloan Foundation (to GGB), National Institutes of Health Grant 1RC1-DE020630 from the National Institute of Dental and Craniofacial Research (NIDCR) (to GGB) and by National Institutes of Health Fellowship 1F31-DE019576 from NIDCR (to AMV).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-05-26
    Description: © 2008 Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Biology 6 (2008): e280, doi:10.1371/journal.pbio.0060280.
    Description: The intestinal microbiota is essential to human health, with effects on nutrition, metabolism, pathogen resistance, and other processes. Antibiotics may disrupt these interactions and cause acute disease, as well as contribute to chronic health problems, although technical challenges have hampered research on this front. Several recent studies have characterized uncultured and complex microbial communities by applying a new, massively parallel technology to obtain hundreds of thousands of sequences of a specific variable region within the small subunit rRNA gene. These shorter sequences provide an indication of diversity. We used this technique to track changes in the intestinal microbiota of three healthy humans before and after treatment with the antibiotic ciprofloxacin, with high sensitivity and resolution, and without sacrificing breadth of coverage. Consistent with previous results, we found that the microbiota of these individuals was similar at the genus level, but interindividual differences were evident at finer scales. Ciprofloxacin reduced the diversity of the intestinal microbiota, with significant effects on about one-third of the bacterial taxa. Despite this pervasive disturbance, the membership of the communities had largely returned to the pretreatment state within 4 weeks.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 5 (2010): e9688, doi:10.1371/journal.pone.0009688.
    Description: Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earth's oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS) to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions. We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value 〈 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures. Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a “core” component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.
    Description: This work was primarily funded by a collaborative grant from the National Institutes of Health (R01 ES 013679-01A2) awarded to DB, DMA, and M. Bento Soares. Funding support for DMA and DLE was also provided from the Woods Hole Center for Oceans and Human Health from the NSF/NIEHS Centers for Oceans and Human Health program, NIEHS (P50 ES 012742) and (NSF OCE-043072). Additional support came from the National Science Foundation (EF-0732440) in a grant awarded to F. Gerald Plumley, DB, JDH, and DMA. AM was supported by an Institutional NRSA (T 32 GM98629).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2022-05-26
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e18849, doi:10.1371/journal.pone.0018849.
    Description: Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.
    Description: Funding was provided by the Hudson River Foundation, grant number 00607A, and the New York State Department of Environmental Conservation (MOU 2008).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56335, doi:10.1371/journal.pone.0056335.
    Description: The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.
    Description: This work was performed with funding from the Center for Dark Energy Biosphere Investigations (C-DEBI) to William Orsi (OCE-0939564) and The Ocean Life Institute (WHOI) to Virginia Edgcomb (OLI-27071359).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 8 (2013): e82764, doi:10.1371/journal.pone.0082764.
    Description: Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.
    Description: K.Y.K. Chan was supported by the Postdoctoral Scholar 1 Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Coastal Ocean Institute, the Croucher Foundation, and the Royal Swedish Academy of Sciences. H. Jiang was supported by National Science Foundation grant NSF OCE-1129496 and an award from WHOI's Ocean Life Institute, and D.K. Padilla was supported by NSF IOS-0920032.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: video/wmv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e93296, doi:10.1371/journal.pone.0093296.
    Description: Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions.
    Description: This research was made possible by a grant from the National Science Foundation Biological Oceanography Program and the Brown University Undergraduate Teaching and Research Award Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e90785, doi:10.1371/journal.pone.0090785.
    Description: Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve as a useful index for health and skin disorder monitoring of threatened and endangered marine mammals.
    Description: A.A. was funded by a WHOI Ocean Life Institute post-doctoral scholar award, and this research was supported by a grant to A.A. and T.J.M. from Woods Hole Oceanographic Institution's (WHOI) Marine Mammal Center.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-05-26
    Description: The work is made available under the Creative Commons CC0 public domain dedication. The definitive version was published in PLoS One 9 (2014): e95380, doi:10.1371/journal.pone.0095380.
    Description: Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.
    Description: This work was supported by NSF grants EF-826924 (R.S.), OCE-821374 (R.S.) and OCE-1232982 (R.S. and B.K.S.); the DOE JGI 2010 Microbes Program grant CSP77 (R.S. and M.E.S.); National Institutes of Health grant 1UH2DK083993 (H.G.M.). Work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The contributions of S.K. were funded under Agreement No. HSHQDC-07-C-00020 awarded by the Department of Homeland Security (DHS) for the management and operation of the National Biodefense Analysis and Countermeasures Center (NBACC), a Federally Funded Research and Development Center.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e109935, doi:10.1371/journal.pone.0109935.
    Description: Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased〉100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and〉1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).
    Description: This research was supported by a grant from the Department of Energy, Advanced Projects Research Agency – Energy (DE-AR0000089). CWM was supported with a Director's Postdoctoral Fellowship from Argonne National Laboratory.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/quicktime
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...