ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-17
    Description: Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bessede, Alban -- Gargaro, Marco -- Pallotta, Maria T -- Matino, Davide -- Servillo, Giuseppe -- Brunacci, Cinzia -- Bicciato, Silvio -- Mazza, Emilia M C -- Macchiarulo, Antonio -- Vacca, Carmine -- Iannitti, Rossana -- Tissi, Luciana -- Volpi, Claudia -- Belladonna, Maria L -- Orabona, Ciriana -- Bianchi, Roberta -- Lanz, Tobias V -- Platten, Michael -- Della Fazia, Maria A -- Piobbico, Danilo -- Zelante, Teresa -- Funakoshi, Hiroshi -- Nakamura, Toshikazu -- Gilot, David -- Denison, Michael S -- Guillemin, Gilles J -- DuHadaway, James B -- Prendergast, George C -- Metz, Richard -- Geffard, Michel -- Boon, Louis -- Pirro, Matteo -- Iorio, Alfonso -- Veyret, Bernard -- Romani, Luigina -- Grohmann, Ursula -- Fallarino, Francesca -- Puccetti, Paolo -- P30 CA056036/CA/NCI NIH HHS/ -- R01 CA109542/CA/NCI NIH HHS/ -- R01 ES007685/ES/NIEHS NIH HHS/ -- R01ES007685/ES/NIEHS NIH HHS/ -- England -- Nature. 2014 Jul 10;511(7508):184-90. doi: 10.1038/nature13323.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2] IMS Laboratory, University of Bordeaux, 33607 Pessac, France [3]. ; 1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2]. ; Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy. ; Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy. ; Department of Chemistry and Technology of Drugs, University of Perugia, 06123 Perugia, Italy. ; 1] Experimental Neuroimmunology Unit, German Cancer Research Center, 69120 Heidelberg, Germany [2] Department of Neurooncology, University Hospital, 69120 Heidelberg, Germany. ; Center for Advanced Research and Education, Asahikawa Medical University, 078-8510 Asahikawa, Japan. ; Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 565-0871 Osaka, Japan. ; CNRS UMR6290, Institut de Genetique et Developpement de Rennes, Universite de Rennes 1, 35043 Rennes, France. ; Department of Environmental Toxicology, University of California, Davis, 95616 California, USA. ; Australian School of Advanced Medicine (ASAM), Macquarie University, 2109 New South Wales, Australia. ; Lankenau Institute for Medical Research, Wynnewood, 19096 Pennsylvania, USA. ; New Link Genetics Corporation, Ames, 50010 Iowa, USA. ; IMS Laboratory, University of Bordeaux, 33607 Pessac, France. ; Bioceros, 3584 Utrecht, The Netherlands. ; Department of Medicine, University of Perugia, 06132 Perugia, Italy. ; Department of Clinical Epidemiology & Biostatistics, McMaster University, Ontario L8S 4K1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24930766" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Infections/immunology/metabolism ; Disease Resistance/drug effects/*genetics/*immunology ; Endotoxemia/genetics/immunology/metabolism ; Enzyme Activation/drug effects ; Gene Expression Regulation/drug effects ; Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism ; Inflammation/enzymology/genetics/metabolism ; Kynurenine/metabolism ; Lipopolysaccharides/pharmacology ; Mice ; Phosphorylation ; Receptors, Aryl Hydrocarbon/genetics/*metabolism ; Signal Transduction ; Tryptophan Oxygenase/metabolism ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-22
    Description: During cap-dependent eukaryotic translation initiation, ribosomes scan messenger RNA from the 5' end to the first AUG start codon with favourable sequence context. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF), and translation of the main downstream ORF requires re-initiation, an incompletely understood process. Re-initiation is thought to involve the same factors as standard initiation. It is unknown whether any factors specifically affect translation re-initiation without affecting standard cap-dependent translation. Here we uncover the non-canonical initiation factors density regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT-1; also called MCTS1 in humans) as the first selective regulators of eukaryotic re-initiation. mRNAs containing upstream ORFs with strong Kozak sequences selectively require DENR-MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleich, Sibylle -- Strassburger, Katrin -- Janiesch, Philipp Christoph -- Koledachkina, Tatyana -- Miller, Katharine K -- Haneke, Katharina -- Cheng, Yong-Sheng -- Kuchler, Katrin -- Stoecklin, Georg -- Duncan, Kent E -- Teleman, Aurelio A -- 260602/European Research Council/International -- England -- Nature. 2014 Aug 14;512(7513):208-12. doi: 10.1038/nature13401. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2]. ; 1] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany [2]. ; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. ; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Cells, Cultured ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/growth & development ; Eukaryotic Initiation Factors/genetics/*metabolism ; Gene Expression Regulation/*genetics ; Open Reading Frames ; Protein Biosynthesis/*genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-04
    Description: T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORgammat, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORgammat in response to TGF-beta signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutz, Sascha -- Kayagaki, Nobuhiko -- Phung, Qui T -- Eidenschenk, Celine -- Noubade, Rajkumar -- Wang, Xiaoting -- Lesch, Justin -- Lu, Rongze -- Newton, Kim -- Huang, Oscar W -- Cochran, Andrea G -- Vasser, Mark -- Fauber, Benjamin P -- DeVoss, Jason -- Webster, Joshua -- Diehl, Lauri -- Modrusan, Zora -- Kirkpatrick, Donald S -- Lill, Jennie R -- Ouyang, Wenjun -- Dixit, Vishva M -- England -- Nature. 2015 Feb 19;518(7539):417-21. doi: 10.1038/nature13979. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Stability ; Female ; Inflammation/genetics/pathology ; Interleukin-17/*biosynthesis ; Intestine, Small/metabolism/pathology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Protein Biosynthesis ; Signal Transduction ; Substrate Specificity ; Th17 Cells/*metabolism ; Transforming Growth Factor beta/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitin-Specific Proteases/biosynthesis/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-18
    Description: Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate-produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2-recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as alpha2a- and beta1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boucrot, Emmanuel -- Ferreira, Antonio P A -- Almeida-Souza, Leonardo -- Debard, Sylvain -- Vallis, Yvonne -- Howard, Gillian -- Bertot, Laetitia -- Sauvonnet, Nathalie -- McMahon, Harvey T -- U105178805/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):460-5. doi: 10.1038/nature14067. Epub 2014 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK [2] Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK. ; Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK. ; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; 1] Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK [2] Department of Biology, Ecole Normale Superieure de Cachan, 94235 Cachan, France. ; Institut Pasteur, Unite de Pathogenie Moleculaire Microbienne, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517094" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Acyltransferases/*metabolism ; Cell Line ; Clathrin ; Dynamins/metabolism ; *Endocytosis ; Humans ; Ligands ; Phosphatidylinositol Phosphates/metabolism ; Pseudopodia/metabolism ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptors, G-Protein-Coupled/metabolism ; Receptors, Interleukin-2/metabolism ; Signal Transduction ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-14
    Description: Intracellular ISG15 is an interferon (IFN)-alpha/beta-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-alpha/beta-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-gamma-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-alpha/beta immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutieres syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-alpha/beta signalling, resulting in the enhancement and amplification of IFN-alpha/beta responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-alpha/beta immunity. In humans, intracellular ISG15 is IFN-alpha/beta-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-alpha/beta and prevention of IFN-alpha/beta-dependent autoinflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xianqin -- Bogunovic, Dusan -- Payelle-Brogard, Beatrice -- Francois-Newton, Veronique -- Speer, Scott D -- Yuan, Chao -- Volpi, Stefano -- Li, Zhi -- Sanal, Ozden -- Mansouri, Davood -- Tezcan, Ilhan -- Rice, Gillian I -- Chen, Chunyuan -- Mansouri, Nahal -- Mahdaviani, Seyed Alireza -- Itan, Yuval -- Boisson, Bertrand -- Okada, Satoshi -- Zeng, Lu -- Wang, Xing -- Jiang, Hui -- Liu, Wenqiang -- Han, Tiantian -- Liu, Delin -- Ma, Tao -- Wang, Bo -- Liu, Mugen -- Liu, Jing-Yu -- Wang, Qing K -- Yalnizoglu, Dilek -- Radoshevich, Lilliana -- Uze, Gilles -- Gros, Philippe -- Rozenberg, Flore -- Zhang, Shen-Ying -- Jouanguy, Emmanuelle -- Bustamante, Jacinta -- Garcia-Sastre, Adolfo -- Abel, Laurent -- Lebon, Pierre -- Notarangelo, Luigi D -- Crow, Yanick J -- Boisson-Dupuis, Stephanie -- Casanova, Jean-Laurent -- Pellegrini, Sandra -- 1P01AI076210-01A1/AI/NIAID NIH HHS/ -- 309449/European Research Council/International -- 8UL1TR000043/TR/NCATS NIH HHS/ -- P01 AI076210/AI/NIAID NIH HHS/ -- P01 AI090935/AI/NIAID NIH HHS/ -- P01AI090935/AI/NIAID NIH HHS/ -- R00 AI106942/AI/NIAID NIH HHS/ -- R00AI106942-02/AI/NIAID NIH HHS/ -- R01 AI035237/AI/NIAID NIH HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- U19 AI083025/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):89-93. doi: 10.1038/nature13801. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Microbiology Training Area, Graduate School of Biomedical Sciences of Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA [2] Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy. ; Immunology Division and Pediatric Neurology Department, Hacettepe University Children's Hospital, 06100 Ankara, Turkey. ; Division of Infectious Diseases and Clinical Immunology, Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, 4739 Teheran, Iran. ; Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK. ; Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Sangzhi County People's Hospital, Sangzhi 427100, China. ; Genetics Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China. ; 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China [2] Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; Institut Pasteur, Bacteria-Cell Interactions Unit, 75724 Paris, France. ; CNRS UMR5235, Montpellier II University, Place Eugene Bataillon, 34095 Montpellier, France. ; Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada. ; Paris Descartes University, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, 75015 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [3] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; 1] Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Howard Hughes Medical Institute, New York, New York 10065, USA [4] Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France [5]. ; 1] Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307056" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alleles ; Child ; Cytokines/deficiency/genetics/*metabolism ; Endopeptidases/chemistry/metabolism ; Female ; Gene Expression Regulation ; Humans ; Inflammation/genetics/immunology/*prevention & control ; Interferon Type I/*immunology/metabolism ; Intracellular Space/*metabolism ; Male ; Pedigree ; S-Phase Kinase-Associated Proteins/metabolism ; Signal Transduction ; Ubiquitination ; Ubiquitins/deficiency/genetics/*metabolism ; Viruses/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-10
    Description: The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grallert, Agnes -- Boke, Elvan -- Hagting, Anja -- Hodgson, Ben -- Connolly, Yvonne -- Griffiths, John R -- Smith, Duncan L -- Pines, Jonathon -- Hagan, Iain M -- 092096/Wellcome Trust/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A16406/Cancer Research UK/United Kingdom -- C147/A16406/Cancer Research UK/United Kingdom -- C29/A13678/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):94-8. doi: 10.1038/nature14019. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; The Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN, UK. ; Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487150" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Chromosome Segregation ; Conserved Sequence ; Cyclin B/metabolism ; Enzyme Activation ; HeLa Cells ; Holoenzymes/metabolism ; Humans ; Isoenzymes/metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Protein Phosphatase 2/chemistry/*metabolism ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*cytology/*enzymology ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-24
    Description: Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a DeltaNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the DeltaNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaughan, Andrew E -- Brumwell, Alexis N -- Xi, Ying -- Gotts, Jeffrey E -- Brownfield, Doug G -- Treutlein, Barbara -- Tan, Kevin -- Tan, Victor -- Liu, Feng Chun -- Looney, Mark R -- Matthay, Michael A -- Rock, Jason R -- Chapman, Harold A -- F32 HL117600-01/HL/NHLBI NIH HHS/ -- R01 HL44712/HL/NHLBI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- U01 HL111054/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):621-5. doi: 10.1038/nature14112. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, California 94143, USA. ; Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305, USA. ; Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anatomy, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bleomycin ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cysts/metabolism/pathology ; Epithelial Cells/*cytology/metabolism/*pathology ; Female ; Humans ; Keratin-5/metabolism ; Lung/*cytology/*pathology/physiology ; Lung Injury/chemically induced/*pathology/virology ; Male ; Mice ; Orthomyxoviridae Infections/pathology/virology ; Phosphoproteins/genetics/metabolism ; *Re-Epithelialization ; Receptors, Notch/metabolism ; Signal Transduction ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Trans-Activators/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-08
    Description: Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of gamma-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glykys, J -- Dzhala, V -- Egawa, K -- Balena, T -- Saponjian, Y -- Kuchibhotla, K V -- Bacskai, B J -- Kahle, K T -- Zeuthen, T -- Staley, K J -- NS 40109-06/NS/NINDS NIH HHS/ -- R01 EB000768/EB/NIBIB NIH HHS/ -- R01 NS040109/NS/NINDS NIH HHS/ -- R01 NS074772/NS/NINDS NIH HHS/ -- R25 NS065743/NS/NINDS NIH HHS/ -- S10 RR025645/RR/NCRR NIH HHS/ -- U41 RR019703/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):670-5. doi: 10.1126/science.1245423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Cell Membrane Permeability ; Cell Polarity ; Chloride Channels/*metabolism ; Chlorides/*metabolism ; Cytoplasm/metabolism ; Extracellular Matrix Proteins/metabolism ; Glycoproteins/metabolism ; Mice ; Mice, Transgenic ; Neurons/*metabolism ; Receptors, GABA-A/*metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-05
    Description: Development of vertebrate embryos involves tightly regulated molecular and cellular processes that progressively instruct proliferating embryonic cells about their identity and behavior. Whereas numerous gene activities have been found to be essential during early embryogenesis, little is known about the minimal conditions and factors that would be sufficient to instruct pluripotent cells to organize the embryo. Here, we show that opposing gradients of bone morphogenetic protein (BMP) and Nodal, two transforming growth factor family members that act as morphogens, are sufficient to induce molecular and cellular mechanisms required to organize, in vivo or in vitro, uncommitted cells of the zebrafish blastula animal pole into a well-developed embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Peng-Fei -- Houssin, Nathalie -- Ferri-Lagneau, Karine F -- Thisse, Bernard -- Thisse, Christine -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):87-9. doi: 10.1126/science.1248252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/*physiology ; Body Patterning ; Bone Morphogenetic Proteins/genetics/*physiology ; Embryo, Nonmammalian/*physiology ; *Embryonic Development ; Gastrula/physiology ; Gastrulation ; Gene Expression Regulation, Developmental ; Morphogenesis ; Nodal Protein/genetics/*physiology ; RNA, Messenger/genetics ; Signal Transduction ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-06
    Description: Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreeramkumar, Vinatha -- Adrover, Jose M -- Ballesteros, Ivan -- Cuartero, Maria Isabel -- Rossaint, Jan -- Bilbao, Izaskun -- Nacher, Maria -- Pitaval, Christophe -- Radovanovic, Irena -- Fukui, Yoshinori -- McEver, Rodger P -- Filippi, Marie-Dominique -- Lizasoain, Ignacio -- Ruiz-Cabello, Jesus -- Zarbock, Alexander -- Moro, Maria A -- Hidalgo, Andres -- HL03463/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL090676/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- R01 HL034363/HL/NHLBI NIH HHS/ -- R01 HL090676/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1234-8. doi: 10.1126/science.1256478. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. ; Unidad de Investigacion Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain. ; Department of Anesthesiology and Critical Care Medicine, University of Munster and Max Planck Institute Munster, Munster, Germany. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia. ; Division of Immunogenetics, Department of Immunobiology and Neuroscience, Kyushu University, Japan. ; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. ; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany. ahidalgo@cnic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Circulation ; Blood Platelets/*immunology ; Cell Movement ; Cell Polarity ; Endothelium, Vascular/immunology ; Inflammation/blood/*immunology ; Male ; Membrane Glycoproteins ; Mice ; Mice, Inbred C57BL ; Neutrophils/*immunology ; *Platelet Activation ; Signal Transduction ; Thrombosis/*immunology ; Venules/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-10-18
    Description: Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, Ryo -- Sumida, Kumiko -- Yoshii, Tomoaki -- Ohyama, Kentaro -- Shinohara, Hidefumi -- Matsubayashi, Yoshikatsu -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):343-6. doi: 10.1126/science.1257800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ; Department of Applied Molecular Biosciences, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. matsu@bio.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Molecular Sequence Data ; Nitrogen/*metabolism ; Peptides/*metabolism ; Plant Roots/genetics/*growth & development/metabolism ; Plant Shoots/genetics/*growth & development/metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-09-06
    Description: Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tam, Jerry C H -- Bidgood, Susanna R -- McEwan, William A -- James, Leo C -- 281627/European Research Council/International -- MC_U105181010/Medical Research Council/United Kingdom -- U105181010/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1256070. doi: 10.1126/science.1256070. Epub 2014 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. lcj@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190799" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*immunology ; Adenovirus Infections, Human/*immunology ; Animals ; Antibodies, Viral/immunology ; Complement C3/*immunology ; Cytokines/biosynthesis/genetics ; Dogs ; HEK293 Cells ; Host-Pathogen Interactions/*immunology ; Humans ; *Immunity, Innate ; Interferon Regulatory Factors/metabolism ; NF-kappa B/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Ribonucleoproteins/genetics/metabolism ; Signal Transduction ; Transcription Factor AP-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Peled, Liron -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1191-2. doi: 10.1126/science.aaa1808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, La Jolla, CA 92122, USA. lironbp@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; *Body Size ; *Cell Enlargement ; *Cell Proliferation ; GTP-Binding Protein Regulators/*metabolism ; Lysosomes/*metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/metabolism ; Protein Transport ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-08-30
    Description: Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herz, Hans-Martin -- Morgan, Marc -- Gao, Xin -- Jackson, Jessica -- Rickels, Ryan -- Swanson, Selene K -- Florens, Laurence -- Washburn, Michael P -- Eissenberg, Joel C -- Shilatifard, Ali -- CA R01CA089455/CA/NCI NIH HHS/ -- R01 CA089455/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1065-70. doi: 10.1126/science.1255104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. ; Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO, USA. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. ash@northwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Chromatin/*metabolism ; Disease Models, Animal ; Drosophila Proteins/genetics ; Drosophila melanogaster ; Gene Silencing ; Glioma/genetics/metabolism ; Heterochromatin/metabolism ; Histone-Lysine N-Methyltransferase/genetics ; Histones/*genetics/metabolism ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Lysine/*genetics ; Methionine/*genetics ; Methylation ; Mutation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-05
    Description: Gastric diseases, including peptic ulcer disease and gastric cancer, affect 10% of the world's population and are largely due to chronic Helicobacter pylori infection. Species differences in embryonic development and architecture of the adult stomach make animal models suboptimal for studying human stomach organogenesis and pathogenesis, and there is no experimental model of normal human gastric mucosa. Here we report the de novo generation of three-dimensional human gastric tissue in vitro through the directed differentiation of human pluripotent stem cells. We show that temporal manipulation of the FGF, WNT, BMP, retinoic acid and EGF signalling pathways and three-dimensional growth are sufficient to generate human gastric organoids (hGOs). Developing hGOs progressed through molecular and morphogenetic stages that were nearly identical to the developing antrum of the mouse stomach. Organoids formed primitive gastric gland- and pit-like domains, proliferative zones containing LGR5-expressing cells, surface and antral mucous cells, and a diversity of gastric endocrine cells. We used hGO cultures to identify novel signalling mechanisms that regulate early endoderm patterning and gastric endocrine cell differentiation upstream of the transcription factor NEUROG3. Using hGOs to model pathogenesis of human disease, we found that H. pylori infection resulted in rapid association of the virulence factor CagA with the c-Met receptor, activation of signalling and induction of epithelial proliferation. Together, these studies describe a new and robust in vitro system for elucidating the mechanisms underlying human stomach development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCracken, Kyle W -- Cata, Emily M -- Crawford, Calyn M -- Sinagoga, Katie L -- Schumacher, Michael -- Rockich, Briana E -- Tsai, Yu-Hwai -- Mayhew, Christopher N -- Spence, Jason R -- Zavros, Yana -- Wells, James M -- 5P30DK034933/DK/NIDDK NIH HHS/ -- K01 DK091415/DK/NIDDK NIH HHS/ -- K01DK091415/DK/NIDDK NIH HHS/ -- P30 DK078392/DK/NIDDK NIH HHS/ -- P30 DK0789392/DK/NIDDK NIH HHS/ -- R01 DK080823/DK/NIDDK NIH HHS/ -- R01 DK092456/DK/NIDDK NIH HHS/ -- R01 DK098350/DK/NIDDK NIH HHS/ -- R01 GM072915/GM/NIGMS NIH HHS/ -- R01DK080823/DK/NIDDK NIH HHS/ -- R01DK092456/DK/NIDDK NIH HHS/ -- T32 GM063483/GM/NIGMS NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 RR026314/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):400-4. doi: 10.1038/nature13863. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA. ; Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267, USA. ; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA. ; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA. ; 1] Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA [2] Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA. ; 1] Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA [2] Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363776" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation ; Helicobacter Infections/*physiopathology ; Helicobacter pylori ; Humans ; *Models, Biological ; *Organogenesis ; Organoids/*cytology/microbiology ; Pluripotent Stem Cells/*cytology ; Signal Transduction ; Stomach/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-02-07
    Description: Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desai, Tushar J -- Brownfield, Douglas G -- Krasnow, Mark A -- P30 CA124435/CA/NCI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):190-4. doi: 10.1038/nature12930. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA [2] Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA. ; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Transformation, Neoplastic/metabolism/pathology ; Cells, Cultured ; Cellular Reprogramming ; Clone Cells/cytology ; Female ; Lung/*cytology/embryology/*growth & development/pathology ; Lung Neoplasms/metabolism/*pathology ; Male ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Pulmonary Alveoli/*cytology ; Receptor, Epidermal Growth Factor/metabolism ; *Regeneration ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-05-23
    Description: Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122675/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122675/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mazur, Pawel K -- Reynoird, Nicolas -- Khatri, Purvesh -- Jansen, Pascal W T C -- Wilkinson, Alex W -- Liu, Shichong -- Barbash, Olena -- Van Aller, Glenn S -- Huddleston, Michael -- Dhanak, Dashyant -- Tummino, Peter J -- Kruger, Ryan G -- Garcia, Benjamin A -- Butte, Atul J -- Vermeulen, Michiel -- Sage, Julien -- Gozani, Or -- DP2 OD007447/OD/NIH HHS/ -- R01 CA172560/CA/NCI NIH HHS/ -- T32 GM007276/GM/NIGMS NIH HHS/ -- U19 AI109662/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Jun 12;510(7504):283-7. doi: 10.1038/nature13320. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA [3]. ; 1] Department of Biology, Stanford University, California 94305, USA [2]. ; Institute for Immunity, Transplantation and Infection, and Department of Medicine, Stanford University School of Medicine, California 94305, USA. ; Department of Molecular Cancer Research and Department of Medical Oncology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands. ; Department of Biology, Stanford University, California 94305, USA. ; Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA. ; 1] Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA [2] Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, USA (D.D.); Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands (M.V.). ; 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA. ; 1] Department of Molecular Cancer Research and Department of Medical Oncology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands [2] Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, USA (D.D.); Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands (M.V.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847881" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/enzymology/genetics/metabolism/pathology ; Animals ; Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism/pathology ; Disease Models, Animal ; Histone-Lysine N-Methyltransferase/*metabolism ; Humans ; Lung Neoplasms/enzymology/genetics/metabolism/pathology ; Lysine/*metabolism ; MAP Kinase Kinase Kinase 2/chemistry/*metabolism ; MAP Kinase Kinase Kinases/chemistry/*metabolism ; Methylation ; Mice ; Mitogen-Activated Protein Kinases/metabolism ; Oncogene Protein p21(ras)/genetics/*metabolism ; Pancreatic Neoplasms/enzymology/genetics/metabolism/pathology ; Protein Phosphatase 2/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins A-raf/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-07-22
    Description: Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana beta-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engineer, Cawas B -- Ghassemian, Majid -- Anderson, Jeffrey C -- Peck, Scott C -- Hu, Honghong -- Schroeder, Julian I -- ES010337/ES/NIEHS NIH HHS/ -- GM060396/GM/NIGMS NIH HHS/ -- P42 ES010337/ES/NIEHS NIH HHS/ -- R01 GM060396/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):246-50. doi: 10.1038/nature13452. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA. ; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA. ; Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA. ; 1] Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA [2] College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043023" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/drug effects/genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Carbon Dioxide/*metabolism/pharmacology ; Carbonic Anhydrases/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Plant/drug effects ; Mutation ; Peptide Hydrolases/genetics/*metabolism ; Plant Stomata/*growth & development ; Signal Transduction ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-11-20
    Description: The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xu -- Grandont, Laurie -- Li, Hongjiang -- Hauschild, Robert -- Paque, Sebastien -- Abuzeineh, Anas -- Rakusova, Hana -- Benkova, Eva -- Perrot-Rechenmann, Catherine -- Friml, Jiri -- 282300/European Research Council/International -- England -- Nature. 2014 Dec 4;516(7529):90-3. doi: 10.1038/nature13889. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria [2] Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, B-9052 Gent, Belgium [3] Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium. ; Institut des Sciences du Vegetal, UPR2355 CNRS, Saclay Plant Sciences LabEx, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, Cedex, France. ; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria. ; 1] Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, B-9052 Gent, Belgium [2] Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409144" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/metabolism ; Cell Proliferation ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Hypocotyl/cytology/metabolism ; Indoleacetic Acids/*metabolism ; Microtubules/*metabolism ; Plant Proteins/genetics/*metabolism ; Plant Roots/cytology/metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-08-15
    Description: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viale, Andrea -- Pettazzoni, Piergiorgio -- Lyssiotis, Costas A -- Ying, Haoqiang -- Sanchez, Nora -- Marchesini, Matteo -- Carugo, Alessandro -- Green, Tessa -- Seth, Sahil -- Giuliani, Virginia -- Kost-Alimova, Maria -- Muller, Florian -- Colla, Simona -- Nezi, Luigi -- Genovese, Giannicola -- Deem, Angela K -- Kapoor, Avnish -- Yao, Wantong -- Brunetto, Emanuela -- Kang, Ya'an -- Yuan, Min -- Asara, John M -- Wang, Y Alan -- Heffernan, Timothy P -- Kimmelman, Alec C -- Wang, Huamin -- Fleming, Jason B -- Cantley, Lewis C -- DePinho, Ronald A -- Draetta, Giulio F -- CA016672/CA/NCI NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA117969/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30CA16672/CA/NCI NIH HHS/ -- P50 CA127003/CA/NCI NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):628-32. doi: 10.1038/nature13611. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA. ; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy. ; Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Pathology Unit, San Raffaele Scientific Institute, Milan 20132, Italy. ; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119024" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Carcinoma, Pancreatic Ductal/drug therapy/genetics/*metabolism/*pathology ; Cell Respiration/drug effects ; Cell Survival/drug effects ; Disease Models, Animal ; Female ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Glycolysis ; Lysosomes/metabolism ; Mice ; Mitochondria/drug effects/*metabolism ; Mutation/genetics ; Neoplasm Recurrence, Local/prevention & control ; Neoplastic Stem Cells/drug effects/metabolism/pathology ; Oxidative Phosphorylation/drug effects ; Pancreatic Neoplasms/drug therapy/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/*genetics/metabolism ; Recurrence ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-07-22
    Description: Eukaryotic cells coordinately control anabolic and catabolic processes to maintain cell and tissue homeostasis. Mechanistic target of rapamycin complex 1 (mTORC1) promotes nutrient-consuming anabolic processes, such as protein synthesis. Here we show that as well as increasing protein synthesis, mTORC1 activation in mouse and human cells also promotes an increased capacity for protein degradation. Cells with activated mTORC1 exhibited elevated levels of intact and active proteasomes through a global increase in the expression of genes encoding proteasome subunits. The increase in proteasome gene expression, cellular proteasome content, and rates of protein turnover downstream of mTORC1 were all dependent on induction of the transcription factor nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1). Genetic activation of mTORC1 through loss of the tuberous sclerosis complex tumour suppressors, TSC1 or TSC2, or physiological activation of mTORC1 in response to growth factors or feeding resulted in increased NRF1 expression in cells and tissues. We find that this NRF1-dependent elevation in proteasome levels serves to increase the intracellular pool of amino acids, which thereby influences rates of new protein synthesis. Therefore, mTORC1 signalling increases the efficiency of proteasome-mediated protein degradation for both quality control and as a mechanism to supply substrate for sustained protein synthesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402229/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402229/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yinan -- Nicholatos, Justin -- Dreier, John R -- Ricoult, Stephane J H -- Widenmaier, Scott B -- Hotamisligil, Gokhan S -- Kwiatkowski, David J -- Manning, Brendan D -- CA120964/CA/NCI NIH HHS/ -- CA122617/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- R01 CA122617/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Sep 18;513(7518):440-3. doi: 10.1038/nature13492. Epub 2014 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Translational Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043031" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/*metabolism ; Nuclear Respiratory Factor 1/genetics/metabolism ; Proteasome Endopeptidase Complex/genetics/metabolism ; *Protein Biosynthesis ; Proteins/chemistry/*metabolism ; *Proteolysis ; Signal Transduction ; Sterol Regulatory Element Binding Protein 1/metabolism ; TOR Serine-Threonine Kinases/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-11-11
    Description: The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294627/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294627/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tschopp, Patrick -- Sherratt, Emma -- Sanger, Thomas J -- Groner, Anna C -- Aspiras, Ariel C -- Hu, Jimmy K -- Pourquie, Olivier -- Gros, Jerome -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37-HD032443/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):391-4. doi: 10.1038/nature13819. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 67400 Illkirch, France [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Developmental and Stem Cell Biology Department, Institut Pasteur, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cell Lineage ; Cloaca/anatomy & histology/*embryology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genitalia/anatomy & histology/*embryology/metabolism ; Mice ; Phylogeny ; Signal Transduction ; Snakes/embryology ; Tissue Transplantation ; X-Ray Microtomography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-01-17
    Description: Cells of the osteoblast lineage affect the homing and the number of long-term repopulating haematopoietic stem cells, haematopoietic stem cell mobilization and lineage determination and B cell lymphopoiesis. Osteoblasts were recently implicated in pre-leukaemic conditions in mice. However, a single genetic change in osteoblasts that can induce leukaemogenesis has not been shown. Here we show that an activating mutation of beta-catenin in mouse osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukaemia with common chromosomal aberrations and cell autonomous progression. Activated beta-catenin stimulates expression of the Notch ligand jagged 1 in osteoblasts. Subsequent activation of Notch signalling in haematopoietic stem cell progenitors induces the malignant changes. Genetic or pharmacological inhibition of Notch signalling ameliorates acute myeloid leukaemia and demonstrates the pathogenic role of the Notch pathway. In 38% of patients with myelodysplastic syndromes or acute myeloid leukaemia, increased beta-catenin signalling and nuclear accumulation was identified in osteoblasts and these patients showed increased Notch signalling in haematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce acute myeloid leukaemia, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kode, Aruna -- Manavalan, John S -- Mosialou, Ioanna -- Bhagat, Govind -- Rathinam, Chozha V -- Luo, Na -- Khiabanian, Hossein -- Lee, Albert -- Murty, Vundavalli V -- Friedman, Richard -- Brum, Andrea -- Park, David -- Galili, Naomi -- Mukherjee, Siddhartha -- Teruya-Feldstein, Julie -- Raza, Azra -- Rabadan, Raul -- Berman, Ellin -- Kousteni, Stavroula -- P01 AG032959/AG/NIA NIH HHS/ -- P30 DK063608/DK/NIDDK NIH HHS/ -- R01 AR054447/AR/NIAMS NIH HHS/ -- R01 AR055931/AR/NIAMS NIH HHS/ -- T32 GM082797/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 13;506(7487):240-4. doi: 10.1038/nature12883. Epub 2014 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Genetics and Development College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, USA. ; Department of Pathology & Institute for Cancer Genetics Irving Cancer Research Center, Columbia University, New York, New York 10032, USA. ; Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; 1] Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA [2] Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands. ; Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA. ; Myelodysplastic Syndromes Center, Columbia University New York, New York 10032, USA. ; Departments of Medicine Hematology & Oncology Columbia University New York, New York 10032, USA. ; Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA. ; 1] Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA [2] Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24429522" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia/genetics/metabolism/pathology ; Animals ; Base Sequence ; Calcium-Binding Proteins/deficiency/genetics/metabolism ; Cell Differentiation/genetics ; Cell Lineage ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic/*genetics/pathology ; Chromosome Aberrations ; Female ; Hematopoietic Stem Cells/metabolism/pathology ; Humans ; Intercellular Signaling Peptides and Proteins/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*genetics/metabolism/*pathology ; Ligands ; Male ; Membrane Proteins/deficiency/genetics/metabolism ; Mice ; Mutation/*genetics ; Myelodysplastic Syndromes/genetics/metabolism/pathology ; Myeloid Cells/metabolism/pathology ; Osteoblasts/*metabolism/pathology/secretion ; Receptors, Notch/metabolism ; Signal Transduction ; Tumor Microenvironment/genetics ; beta Catenin/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-01-07
    Description: Wnts are evolutionarily conserved secreted signalling proteins that, in various developmental contexts, spread from their site of synthesis to form a gradient and activate target-gene expression at a distance. However, the requirement for Wnts to spread has never been directly tested. Here we used genome engineering to replace the endogenous wingless gene, which encodes the main Drosophila Wnt, with one that expresses a membrane-tethered form of the protein. Surprisingly, the resulting flies were viable and produced normally patterned appendages of nearly the right size, albeit with a delay. We show that, in the prospective wing, prolonged wingless transcription followed by memory of earlier signalling allows persistent expression of relevant target genes. We suggest therefore that the spread of Wingless is dispensable for patterning and growth even though it probably contributes to increasing cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexandre, Cyrille -- Baena-Lopez, Alberto -- Vincent, Jean-Paul -- 082694/Z/07/Z/Wellcome Trust/United Kingdom -- U117584268/Medical Research Council/United Kingdom -- England -- Nature. 2014 Jan 9;505(7482):180-5. doi: 10.1038/nature12879. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]. ; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390349" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Body Patterning/genetics ; Cell Membrane/*metabolism ; Cell Proliferation ; Chemokine CX3CL1/metabolism ; Diffusion ; Drosophila Proteins/deficiency/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/*growth & development/*metabolism ; Gene Expression Regulation, Developmental ; Mutation ; Organ Specificity ; Promoter Regions, Genetic/genetics ; Signal Transduction ; Time Factors ; Transcription, Genetic ; Wings, Animal/cytology/growth & development/metabolism ; Wnt1 Protein/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-03-29
    Description: Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering the potential to reveal new targets for therapeutic intervention. Substantial changes in circulating total bile acids are known to occur after VSG. Moreover, bile acids are known to regulate metabolism by binding to the nuclear receptor FXR (farsenoid-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities. Moreover, in the absence of FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced. These results point to bile acids and FXR signalling as an important molecular underpinning for the beneficial effects of this weight-loss surgery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Karen K -- Tremaroli, Valentina -- Clemmensen, Christoffer -- Kovatcheva-Datchary, Petia -- Myronovych, Andriy -- Karns, Rebekah -- Wilson-Perez, Hilary E -- Sandoval, Darleen A -- Kohli, Rohit -- Backhed, Fredrik -- Seeley, Randy J -- DK078392/DK/NIDDK NIH HHS/ -- DK082173/DK/NIDDK NIH HHS/ -- DK093848/DK/NIDDK NIH HHS/ -- HL111319/HL/NHLBI NIH HHS/ -- K08 DK084310/DK/NIDDK NIH HHS/ -- K99 HL111319/HL/NHLBI NIH HHS/ -- P30 DK078392/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 May 8;509(7499):183-8. doi: 10.1038/nature13135. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, Ohio 45237, USA. ; Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, S-413 45 Gothenburg, Sweden. ; 1] Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, Ohio 45237, USA [2] Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. ; Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA. ; Divison of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA. ; 1] Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, S-413 45 Gothenburg, Sweden [2] Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bariatric Surgery ; Bile Acids and Salts/blood ; Body Composition ; Cecum/microbiology ; Feeding Behavior ; *Gastrectomy ; Glucose Intolerance/surgery ; Glucose Tolerance Test ; Male ; Mice ; Mice, Inbred C57BL ; Obesity/etiology/surgery ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*metabolism ; Signal Transduction ; Stomach/metabolism/surgery ; Weight Loss
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-05-30
    Description: Drug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin. In a Phase II clinical trial in poor prognosis AML, ribavirin monotherapy yielded promising responses including remissions; however, all patients relapsed. Here we identify a novel form of drug resistance to ribavirin and Ara-C. We observe that the sonic hedgehog transcription factor glioma-associated protein 1 (GLI1) and the UDP glucuronosyltransferase (UGT1A) family of enzymes are elevated in resistant cells. UGT1As add glucuronic acid to many drugs, modifying their activity in diverse tissues. GLI1 alone is sufficient to drive UGT1A-dependent glucuronidation of ribavirin and Ara-C, and thus drug resistance. Resistance is overcome by genetic or pharmacological inhibition of GLI1, revealing a potential strategy to overcome drug resistance in some patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138053/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138053/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zahreddine, Hiba Ahmad -- Culjkovic-Kraljacic, Biljana -- Assouline, Sarit -- Gendron, Patrick -- Romeo, Andrea A -- Morris, Stephen J -- Cormack, Gregory -- Jaquith, James B -- Cerchietti, Leandro -- Cocolakis, Eftihia -- Amri, Abdellatif -- Bergeron, Julie -- Leber, Brian -- Becker, Michael W -- Pei, Shanshan -- Jordan, Craig T -- Miller, Wilson H -- Borden, Katherine L B -- R01 80728/PHS HHS/ -- R01 98571/PHS HHS/ -- R01 CA080728/CA/NCI NIH HHS/ -- R01 CA098571/CA/NCI NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):90-3. doi: 10.1038/nature13283. Epub 2014 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Universite de Montreal, P.O. Box 6128, Downtown Station, Montreal, Quebec H3C 3J7, Canada. ; Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada. ; Pharmascience Inc., 6111 Royalmount Avenue, Montreal, Quebec H4P 2T4, Canada. ; 1] Pharmascience Inc., 6111 Royalmount Avenue, Montreal, Quebec H4P 2T4, Canada [2] JAQJAM Consulting, Montreal J7V 9B6, Canada. ; Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 1305 York Avenue, New York, New York 10021, USA. ; Hopital Maisonneuve-Rosemont, 5415 Boulevard de l'Assomption, Montreal, Quebec H1T 2M4, Canada. ; McMaster University/Hamilton Health Sciences, 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada. ; Department of Medicine, Division of Hematology/Oncology, 601 Elmwood Avenue, University of Rochester, Rochester, New York 14627, USA. ; Division of Hematology, Department of Medicine, University of Colorado Denver, 13123 East 16th Avenue, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870236" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cytarabine/metabolism/pharmacology ; *Drug Resistance, Neoplasm/drug effects/genetics ; Gene Deletion ; Glucuronic Acid/*metabolism ; Glucuronosyltransferase/biosynthesis/*metabolism ; Hedgehog Proteins/*metabolism ; Humans ; Leukemia, Myeloid, Acute/*drug therapy/enzymology/*metabolism/pathology ; Ribavirin/metabolism/pharmacology ; Signal Transduction ; Transcription Factors/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-03-05
    Description: Ubiquitin (Ub) has important roles in a wide range of intracellular signalling pathways. In the conventional view, ubiquitin alters the signalling activity of the target protein through covalent modification, but accumulating evidence points to the emerging role of non-covalent interaction between ubiquitin and the target. In the innate immune signalling pathway of a viral RNA sensor, RIG-I, both covalent and non-covalent interactions with K63-linked ubiquitin chains (K63-Ubn) were shown to occur in its signalling domain, a tandem caspase activation and recruitment domain (hereafter referred to as 2CARD). Non-covalent binding of K63-Ubn to 2CARD induces its tetramer formation, a requirement for downstream signal activation. Here we report the crystal structure of the tetramer of human RIG-I 2CARD bound by three chains of K63-Ub2. 2CARD assembles into a helical tetramer resembling a 'lock-washer', in which the tetrameric surface serves as a signalling platform for recruitment and activation of the downstream signalling molecule, MAVS. Ubiquitin chains are bound along the outer rim of the helical trajectory, bridging adjacent subunits of 2CARD and stabilizing the 2CARD tetramer. The combination of structural and functional analyses reveals that binding avidity dictates the K63-linkage and chain-length specificity of 2CARD, and that covalent ubiquitin conjugation of 2CARD further stabilizes the Ub-2CARD interaction and thus the 2CARD tetramer. Our work provides unique insights into the novel types of ubiquitin-mediated signal-activation mechanism, and previously unexpected synergism between the covalent and non-covalent ubiquitin interaction modes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peisley, Alys -- Wu, Bin -- Xu, Hui -- Chen, Zhijian J -- Hur, Sun -- R01-GM63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 1;509(7498):110-4. doi: 10.1038/nature13140. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA [2] Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590070" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Caspases/metabolism ; Crystallography, X-Ray ; DEAD-box RNA Helicases/*chemistry/*metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Stability ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA, Viral/analysis/metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-12-24
    Description: Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLPhi motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded beta-domain that sequesters the helical YXXXXLPhi motif into a partly buried beta-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bah, Alaji -- Vernon, Robert M -- Siddiqui, Zeba -- Krzeminski, Mickael -- Muhandiram, Ranjith -- Zhao, Charlie -- Sonenberg, Nahum -- Kay, Lewis E -- Forman-Kay, Julie D -- MOP-114985/Canadian Institutes of Health Research/Canada -- MOP-119579/Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Mar 5;519(7541):106-9. doi: 10.1038/nature13999. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533957" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Eukaryotic Initiation Factor-4E/*chemistry/*metabolism ; Eukaryotic Initiation Factors/*chemistry/*metabolism ; Humans ; Intrinsically Disordered Proteins/*chemistry/*metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-11-11
    Description: Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, William J -- Jackson, Thomas J -- Knight, John R P -- Ridgway, Rachel A -- Jamieson, Thomas -- Karim, Saadia A -- Jones, Carolyn -- Radulescu, Sorina -- Huels, David J -- Myant, Kevin B -- Dudek, Kate M -- Casey, Helen A -- Scopelliti, Alessandro -- Cordero, Julia B -- Vidal, Marcos -- Pende, Mario -- Ryazanov, Alexey G -- Sonenberg, Nahum -- Meyuhas, Oded -- Hall, Michael N -- Bushell, Martin -- Willis, Anne E -- Sansom, Owen J -- 311301/European Research Council/International -- A7130/Cancer Research UK/United Kingdom -- G1000078/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- MC_UP_A600_1023/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):497-500. doi: 10.1038/nature13896. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Medical Research Council Toxicology Unit, Leicester LE1 9HN, UK. ; Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Sante et de la Recherche Medicale, U1151, F-75014 Paris, France Universite Paris Descartes, Sorbonne Paris Cite, 75006 Paris, France. ; Department of Pharmacology, Rutgers The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada. ; Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel. ; Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383520" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/deficiency/genetics ; Animals ; Cell Proliferation ; Cell Transformation, Neoplastic/metabolism/*pathology ; Elongation Factor 2 Kinase/deficiency/genetics/metabolism ; Enzyme Activation ; Genes, APC ; Intestinal Neoplasms/genetics/*metabolism/*pathology ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/*metabolism ; Oncogene Protein p55(v-myc)/metabolism ; *Peptide Chain Elongation, Translational ; Peptide Elongation Factor 2/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-04-30
    Description: The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Galen, Peter -- Kreso, Antonija -- Mbong, Nathan -- Kent, David G -- Fitzmaurice, Timothy -- Chambers, Joseph E -- Xie, Stephanie -- Laurenti, Elisa -- Hermans, Karin -- Eppert, Kolja -- Marciniak, Stefan J -- Goodall, Jane C -- Green, Anthony R -- Wouters, Bradly G -- Wienholds, Erno -- Dick, John E -- 100140/Wellcome Trust/United Kingdom -- 19639/Arthritis Research UK/United Kingdom -- 201592/Canadian Institutes of Health Research/Canada -- G1002610/Medical Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Jun 12;510(7504):268-72. doi: 10.1038/nature13228. Epub 2014 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK. ; Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK. ; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK. ; Department of Pediatrics, McGill University and the Research Institute of the McGill University Health Centre, Westmount, Quebec H3Z 2Z3, Canada. ; Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24776803" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 4/metabolism ; Animals ; Apoptosis/drug effects ; *Endoplasmic Reticulum Stress/drug effects ; Eukaryotic Initiation Factor-2/metabolism ; HSP40 Heat-Shock Proteins/metabolism ; Hematopoietic Stem Cells/*cytology/drug effects ; Heterografts ; Humans ; Male ; Membrane Proteins/metabolism ; Mice ; Molecular Chaperones/metabolism ; Protein Folding ; Protein Phosphatase 1/metabolism ; Signal Transduction ; Transcription Factor CHOP/metabolism ; Tunicamycin/pharmacology ; Unfolded Protein Response/drug effects/*physiology ; eIF-2 Kinase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-04-11
    Description: One promise of synthetic biology is the creation of genetic circuitry that enables the execution of logical programming in living cells. Such 'wet programming' is positioned to transform a wide and diverse swathe of biotechnology ranging from therapeutics and diagnostics to water treatment strategies. Although progress in the development of a library of genetic modules continues apace, a major challenge for their integration into larger circuits is the generation of sufficiently fast and precise communication between modules. An attractive approach is to integrate engineered circuits with host processes that facilitate robust cellular signalling. In this context, recent studies have demonstrated that bacterial protein degradation can trigger a precise response to stress by overloading a limited supply of intracellular proteases. Here we use protease competition to engineer rapid and tunable coupling of genetic circuits across multiple spatial and temporal scales. We characterize coupling delay times that are more than an order of magnitude faster than standard transcription-factor-based coupling methods (less than 1 min compared with approximately 20-40 min) and demonstrate tunability through manipulation of the linker between the protein and its degradation tag. We use this mechanism as a platform to couple genetic clocks at the intracellular and colony level, then synchronize the multi-colony dynamics to reduce variability in both clocks. We show how the coupled clock network can be used to encode independent environmental inputs into a single time series output, thus enabling frequency multiplexing (information transmitted on a common channel by distinct frequencies) in a genetic circuit context. Our results establish a general framework for the rapid and tunable coupling of genetic circuits through the use of native 'queueing' processes such as competitive protein degradation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prindle, Arthur -- Selimkhanov, Jangir -- Li, Howard -- Razinkov, Ivan -- Tsimring, Lev S -- Hasty, Jeff -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01 GM069811/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Apr 17;508(7496):387-91. doi: 10.1038/nature13238. Epub 2014 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA [2]. ; Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA. ; BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA [2] BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, USA [3] Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717442" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/metabolism ; Biological Clocks/genetics ; *Gene Regulatory Networks ; Peptide Hydrolases/metabolism ; *Protein Biosynthesis ; *Proteolysis ; Signal Transduction ; Synthetic Biology ; Time Factors ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-11-11
    Description: beta-catenin is a multi-functional protein that has an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that in mice beta-catenin mediates pro-resilient and anxiolytic effects in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide beta-catenin enrichment mapping, we identify Dicer1-important in small RNA (for example, microRNA) biogenesis--as a beta-catenin target gene that mediates resilience. Small RNA profiling after excising beta-catenin from nucleus accumbens in the context of chronic stress reveals beta-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish beta-catenin as a critical regulator in the development of behavioural resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dias, Caroline -- Feng, Jian -- Sun, Haosheng -- Shao, Ning Yi -- Mazei-Robison, Michelle S -- Damez-Werno, Diane -- Scobie, Kimberly -- Bagot, Rosemary -- LaBonte, Benoit -- Ribeiro, Efrain -- Liu, XiaoChuan -- Kennedy, Pamela -- Vialou, Vincent -- Ferguson, Deveroux -- Pena, Catherine -- Calipari, Erin S -- Koo, Ja Wook -- Mouzon, Ezekiell -- Ghose, Subroto -- Tamminga, Carol -- Neve, Rachael -- Shen, Li -- Nestler, Eric J -- P50 MH096890/MH/NIMH NIH HHS/ -- R00 MH094405/MH/NIMH NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):51-5. doi: 10.1038/nature13976. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Department of Psychiatry, University of Texas Southwestern, Dallas, Texas 75390, USA. ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383518" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Animals ; DEAD-box RNA Helicases/*genetics/metabolism ; Depression/physiopathology ; Gene Expression Profiling ; *Gene Expression Regulation ; Genome-Wide Association Study ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*genetics/metabolism ; Neurons/metabolism ; *Resilience, Psychological ; Ribonuclease III/*genetics/metabolism ; Signal Transduction ; Stress, Physiological/*genetics ; beta Catenin/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-12-05
    Description: The conserved family of Hedgehog (Hh) proteins acts as short- and long-range secreted morphogens, controlling tissue patterning and differentiation during embryonic development. Mature Hh carries hydrophobic palmitic acid and cholesterol modifications essential for its extracellular spreading. Various extracellular transportation mechanisms for Hh have been suggested, but the pathways actually used for Hh secretion and transport in vivo remain unclear. Here we show that Hh secretion in Drosophila wing imaginal discs is dependent on the endosomal sorting complex required for transport (ESCRT). In vivo the reduction of ESCRT activity in cells producing Hh leads to a retention of Hh at the external cell surface. Furthermore, we show that ESCRT activity in Hh-producing cells is required for long-range signalling. We also provide evidence that pools of Hh and ESCRT proteins are secreted together into the extracellular space in vivo and can subsequently be detected together at the surface of receiving cells. These findings uncover a new function for ESCRT proteins in controlling morphogen activity and reveal a new mechanism for the transport of secreted Hh across the tissue by extracellular vesicles, which is necessary for long-range target induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matusek, Tamas -- Wendler, Franz -- Poles, Sophie -- Pizette, Sandrine -- D'Angelo, Gisela -- Furthauer, Maximilian -- Therond, Pascal P -- England -- Nature. 2014 Dec 4;516(7529):99-103. doi: 10.1038/nature13847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Universite de Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France [2] CNRS, iBV, UMR 7277, 06100 Nice, France [3] INSERM, iBV, U1091, 06100 Nice, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Drosophila melanogaster/cytology/*embryology/metabolism ; Endosomal Sorting Complexes Required for Transport/*metabolism ; Extracellular Space/metabolism ; Hedgehog Proteins/*metabolism/*secretion ; Hemolymph/metabolism ; Imaginal Discs/cytology/embryology ; Protein Transport ; Signal Transduction ; Transport Vesicles/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-12-05
    Description: Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signalling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signalling pathways and chromatin regulators. Notably, either removal of mature microRNAs or pharmacological blockage of signalling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal and a distinct chromatin state, an effect mediated by opposing microRNA families acting on the Myc/Lin28/let-7 axis. These data provide insight into the nature of transcriptional heterogeneity in PSCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256722/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256722/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Roshan M -- Cahan, Patrick -- Shalek, Alex K -- Satija, Rahul -- DaleyKeyser, A Jay -- Li, Hu -- Zhang, Jin -- Pardee, Keith -- Gennert, David -- Trombetta, John J -- Ferrante, Thomas C -- Regev, Aviv -- Daley, George Q -- Collins, James J -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193- 01/HG/NHGRI NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK096013/DK/NIDDK NIH HHS/ -- K01DK096013/DK/NIDDK NIH HHS/ -- NIH-P30-HD18655/HD/NICHD NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- P50HG005550/HG/NHGRI NIH HHS/ -- R01 GM107536/GM/NIGMS NIH HHS/ -- R01GM107536/GM/NIGMS NIH HHS/ -- R24 DK092760/DK/NIDDK NIH HHS/ -- R24DK092760/DK/NIDDK NIH HHS/ -- T32 HL007623/HL/NHLBI NIH HHS/ -- T32HL007623/HL/NHLBI NIH HHS/ -- T32HL066987/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):56-61. doi: 10.1038/nature13920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [2] Howard Hughes Medical Institute, Department of Biomedical Engineering, Center of Synthetic Biology, Boston University, Boston, Massachusetts 02215, USA. ; Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA. ; Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA. ; Center for Individualized Medicine, Department of Molecular Pharmacology &Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Cell Division ; Embryonic Stem Cells/cytology/physiology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mice ; MicroRNAs/metabolism ; Pluripotent Stem Cells/cytology/*physiology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-05-09
    Description: PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol (3,4,5)-triphosphate, thereby opposing the activity of class I phosphatidylinositol 3-kinases that mediate growth- and survival-factor signalling through phosphatidylinositol 3-kinase effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, here we generate an RNA interference-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal Pten knockdown in the haematopoietic compartment produced highly disseminated T-cell acute lymphoblastic leukaemia. Notably, reactivation of PTEN mainly reduced T-cell leukaemia dissemination but had little effect on tumour load in haematopoietic organs. Leukaemia infiltration into the intestine was dependent on CCR9 G-protein-coupled receptor signalling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, G-protein-coupled receptors may have an unanticipated role in driving tumour growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumour maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165899/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165899/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miething, Cornelius -- Scuoppo, Claudio -- Bosbach, Benedikt -- Appelmann, Iris -- Nakitandwe, Joy -- Ma, Jing -- Wu, Gang -- Lintault, Laura -- Auer, Martina -- Premsrirut, Prem K -- Teruya-Feldstein, Julie -- Hicks, James -- Benveniste, Helene -- Speicher, Michael R -- Downing, James R -- Lowe, Scott W -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA087497/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- S10 OD016282/OD/NIH HHS/ -- U01 CA105388/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 19;510(7505):402-6. doi: 10.1038/nature13239. Epub 2014 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [3] Department of Medicine I, Medical Center - University of Freiburg, 79106 Freiburg, Germany. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Howard Hughes Medical Institute, New York, New York 10065, USA. ; Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria. ; Departments of Anesthesiology and Radiology, Stony Brook University, Stony Brook, New York 11794, USA. ; 1] Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [3] Howard Hughes Medical Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805236" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemokines/metabolism ; Gene Knockdown Techniques ; Leukemia/*enzymology/genetics/*physiopathology ; Mice, Transgenic ; PTEN Phosphohydrolase/*genetics/*metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; RNA Interference ; Receptors, G-Protein-Coupled/metabolism ; Signal Transduction ; Tumor Microenvironment/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-08-01
    Description: Haematopoiesis is a developmental cascade that generates all blood cell lineages in health and disease. This process relies on quiescent haematopoietic stem cells capable of differentiating, self renewing and expanding upon physiological demand. However, the mechanisms that regulate haematopoietic stem cell homeostasis and function remain largely unknown. Here we show that the neurotrophic factor receptor RET (rearranged during transfection) drives haematopoietic stem cell survival, expansion and function. We find that haematopoietic stem cells express RET and that its neurotrophic factor partners are produced in the haematopoietic stem cell environment. Ablation of Ret leads to impaired survival and reduced numbers of haematopoietic stem cells with normal differentiation potential, but loss of cell-autonomous stress response and reconstitution potential. Strikingly, RET signals provide haematopoietic stem cells with critical Bcl2 and Bcl2l1 surviving cues, downstream of p38 mitogen-activated protein (MAP) kinase and cyclic-AMP-response element binding protein (CREB) activation. Accordingly, enforced expression of RET downstream targets, Bcl2 or Bcl2l1, is sufficient to restore the activity of Ret null progenitors in vivo. Activation of RET results in improved haematopoietic stem cell survival, expansion and in vivo transplantation efficiency. Remarkably, human cord-blood progenitor expansion and transplantation is also improved by neurotrophic factors, opening the way for exploration of RET agonists in human haematopoietic stem cell transplantation. Our work shows that neurotrophic factors are novel components of the haematopoietic stem cell microenvironment, revealing that haematopoietic stem cells and neurons are regulated by similar signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fonseca-Pereira, Diogo -- Arroz-Madeira, Silvia -- Rodrigues-Campos, Mariana -- Barbosa, Ines A M -- Domingues, Rita G -- Bento, Teresa -- Almeida, Afonso R M -- Ribeiro, Helder -- Potocnik, Alexandre J -- Enomoto, Hideki -- Veiga-Fernandes, Henrique -- England -- Nature. 2014 Oct 2;514(7520):98-101. doi: 10.1038/nature13498. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal [2]. ; Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal. ; 1] Division of Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2] Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. ; 1] Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan [2] Graduate School of Medicine, Kobe University7-5-1 Kusunoki-cho, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079320" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Female ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Growth Factors/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogene Proteins c-ret/deficiency/genetics/*metabolism ; Signal Transduction ; Stem Cell Niche ; bcl-X Protein/metabolism ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-02-04
    Description: The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949170/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949170/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choudhuri, Kaushik -- Llodra, Jaime -- Roth, Eric W -- Tsai, Jones -- Gordo, Susana -- Wucherpfennig, Kai W -- Kam, Lance C -- Stokes, David L -- Dustin, Michael L -- 100262/Wellcome Trust/United Kingdom -- AI043542/AI/NIAID NIH HHS/ -- AI045757/AI/NIAID NIH HHS/ -- AI055037/AI/NIAID NIH HHS/ -- AI088377/AI/NIAID NIH HHS/ -- AI093884/AI/NIAID NIH HHS/ -- EY016586/EY/NEI NIH HHS/ -- K99 AI093884/AI/NIAID NIH HHS/ -- K99AI093884/AI/NIAID NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 AI043542/AI/NIAID NIH HHS/ -- R01 AI088377/AI/NIAID NIH HHS/ -- R21 AI055037/AI/NIAID NIH HHS/ -- R37 AI043542/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Mar 6;507(7490):118-23. doi: 10.1038/nature12951. Epub 2014 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, New York 10016, USA [2]. ; 1] Program in Structural Biology, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, New York 10016, USA [2]. ; Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA. ; Department of Biomedical Engineering, Columbia University, 500 W 120th Street, New York, New York 10027, USA. ; 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Program in Immunology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Program in Structural Biology, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, New York 10016, USA [2] New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA. ; 1] Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA [2] Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24487619" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/cytology/immunology/metabolism ; B-Lymphocytes/cytology/immunology/metabolism ; CD4-Positive T-Lymphocytes/immunology/metabolism/*secretion/virology ; *Cell Polarity ; DNA-Binding Proteins/metabolism ; Endosomal Sorting Complexes Required for Transport/metabolism ; Female ; HIV/metabolism ; Histocompatibility Antigens Class I/immunology/metabolism ; Humans ; Immunological Synapses/metabolism/*secretion/ultrastructure ; Intercellular Adhesion Molecule-1/metabolism ; Lymphocyte Activation ; Male ; Mice ; Protein Binding ; Protein Transport ; Receptors, Antigen, T-Cell/immunology/*metabolism/ultrastructure ; Secretory Vesicles/*metabolism/secretion ; Signal Transduction ; Transcription Factors/metabolism ; Vesicular Transport Proteins/metabolism ; Virus Release ; gag Gene Products, Human Immunodeficiency Virus/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-06-06
    Description: Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320971/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320971/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maceyka, Michael -- Spiegel, Sarah -- R01 AI050094/AI/NIAID NIH HHS/ -- R01 CA061774/CA/NCI NIH HHS/ -- R01 GM043880/GM/NIGMS NIH HHS/ -- R01AI500941/AI/NIAID NIH HHS/ -- R01CA61774/CA/NCI NIH HHS/ -- R37GM043880/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):58-67. doi: 10.1038/nature13475.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899305" target="_blank"〉PubMed〈/a〉
    Keywords: Adipokines/metabolism ; Animals ; Autoimmune Diseases/metabolism/pathology ; Ceramides/metabolism ; Endothelium/metabolism ; Humans ; Inflammation/drug therapy/*metabolism ; Lymphocytes/cytology/metabolism ; Lysophospholipids/metabolism ; Signal Transduction ; Sphingolipids/*metabolism ; Sphingosine/analogs & derivatives/metabolism ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-07-18
    Description: The surface of the cornea consists of a unique type of non-keratinized epithelial cells arranged in an orderly fashion, and this is essential for vision by maintaining transparency for light transmission. Cornea epithelial cells (CECs) undergo continuous renewal from limbal stem or progenitor cells (LSCs), and deficiency in LSCs or corneal epithelium--which turns cornea into a non-transparent, keratinized skin-like epithelium--causes corneal surface disease that leads to blindness in millions of people worldwide. How LSCs are maintained and differentiated into corneal epithelium in healthy individuals and which key molecular events are defective in patients have been largely unknown. Here we report establishment of an in vitro feeder-cell-free LSC expansion and three-dimensional corneal differentiation protocol in which we found that the transcription factors p63 (tumour protein 63) and PAX6 (paired box protein PAX6) act together to specify LSCs, and WNT7A controls corneal epithelium differentiation through PAX6. Loss of WNT7A or PAX6 induces LSCs into skin-like epithelium, a critical defect tightly linked to common human corneal diseases. Notably, transduction of PAX6 in skin epithelial stem cells is sufficient to convert them to LSC-like cells, and upon transplantation onto eyes in a rabbit corneal injury model, these reprogrammed cells are able to replenish CECs and repair damaged corneal surface. These findings suggest a central role of the WNT7A-PAX6 axis in corneal epithelial cell fate determination, and point to a new strategy for treating corneal surface diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610745/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610745/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ouyang, Hong -- Xue, Yuanchao -- Lin, Ying -- Zhang, Xiaohui -- Xi, Lei -- Patel, Sherrina -- Cai, Huimin -- Luo, Jing -- Zhang, Meixia -- Zhang, Ming -- Yang, Yang -- Li, Gen -- Li, Hairi -- Jiang, Wei -- Yeh, Emily -- Lin, Jonathan -- Pei, Michelle -- Zhu, Jin -- Cao, Guiqun -- Zhang, Liangfang -- Yu, Benjamin -- Chen, Shaochen -- Fu, Xiang-Dong -- Liu, Yizhi -- Zhang, Kang -- GM049369/GM/NIGMS NIH HHS/ -- R01 EY020846/EY/NEI NIH HHS/ -- R01 EY021374/EY/NEI NIH HHS/ -- England -- Nature. 2014 Jul 17;511(7509):358-61. doi: 10.1038/nature13465. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing 100730, China (X.Z.); Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, China (Y.Y.). ; Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA [3] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [3] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China [4] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030175" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Corneal Diseases/*metabolism/*pathology ; Disease Models, Animal ; Epithelium, Corneal/*cytology/*metabolism/pathology ; Eye Proteins/genetics/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; *Homeostasis ; Humans ; Limbus Corneae/cytology/metabolism ; Male ; Paired Box Transcription Factors/genetics/*metabolism ; Rabbits ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Skin/cytology/metabolism/pathology ; Stem Cell Transplantation ; Stem Cells/cytology/metabolism ; Transcription Factors/metabolism ; Tumor Suppressor Proteins/metabolism ; Wnt Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-05-17
    Description: Neural circuits are shaped by elimination of early-formed redundant synapses during postnatal development. Retrograde signaling from postsynaptic cells regulates synapse elimination. In this work, we identified semaphorins, a family of versatile cell recognition molecules, as retrograde signals for elimination of redundant climbing fiber to Purkinje cell synapses in developing mouse cerebellum. Knockdown of Sema3A, a secreted semaphorin, in Purkinje cells or its receptor in climbing fibers accelerated synapse elimination during postnatal day 8 (P8) to P18. Conversely, knockdown of Sema7A, a membrane-anchored semaphorin, in Purkinje cells or either of its two receptors in climbing fibers impaired synapse elimination after P15. The effect of Sema7A involves signaling by metabotropic glutamate receptor 1, a canonical pathway for climbing fiber synapse elimination. These findings define how semaphorins retrogradely regulate multiple processes of synapse elimination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uesaka, Naofumi -- Uchigashima, Motokazu -- Mikuni, Takayasu -- Nakazawa, Takanobu -- Nakao, Harumi -- Hirai, Hirokazu -- Aiba, Atsu -- Watanabe, Masahiko -- Kano, Masanobu -- New York, N.Y. -- Science. 2014 May 30;344(6187):1020-3. doi: 10.1126/science.1252514. Epub 2014 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan. ; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. mkano-tky@m.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24831527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/genetics/*metabolism ; Brain/*growth & development/metabolism ; Gene Knockdown Techniques ; Mice ; Mice, Inbred C57BL ; Purkinje Cells/metabolism/*physiology ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/genetics/metabolism ; Semaphorin-3A/genetics/*metabolism ; Semaphorins/genetics/*metabolism ; Signal Transduction ; Synapses/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-01-05
    Description: Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Sougata -- Huang, Hai -- Liu, Songmei -- Kornberg, Thomas B -- GM030637/GM/NIGMS NIH HHS/ -- K99HL114867/HL/NHLBI NIH HHS/ -- R01 GM030637/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):1244624. doi: 10.1126/science.1244624. Epub 2014 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385607" target="_blank"〉PubMed〈/a〉
    Keywords: Air Sacs/cytology/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism ; *Cell Communication ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*cytology/*metabolism ; Dynamins/genetics/metabolism ; Membrane Proteins/genetics/metabolism ; Protein Transport ; Pseudopodia/*metabolism ; Signal Transduction ; Trachea/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-03-15
    Description: Motor neurons, which relay neural commands to drive skeletal muscle movements, encompass types ranging from "slow" to "fast," whose biophysical properties govern the timing, gradation, and amplitude of muscle force. Here we identify the noncanonical Notch ligand Delta-like homolog 1 (Dlk1) as a determinant of motor neuron functional diversification. Dlk1, expressed by ~30% of motor neurons, is necessary and sufficient to promote a fast biophysical signature in the mouse and chick. Dlk1 suppresses Notch signaling and activates expression of the K(+) channel subunit Kcng4 to modulate delayed-rectifier currents. Dlk1 inactivation comprehensively shifts motor neurons toward slow biophysical and transcriptome signatures, while abolishing peak force outputs. Our findings provide insights into the development of motor neuron functional diversity and its contribution to the execution of movements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Daniel -- Cherukuri, Pitchaiah -- Henningfeld, Kristine -- Poh, Chor Hoon -- Wittler, Lars -- Grote, Phillip -- Schluter, Oliver -- Schmidt, Jennifer -- Laborda, Jorge -- Bauer, Steven R -- Brownstone, Robert M -- Marquardt, Till -- R01 HD042013/HD/NICHD NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1264-6. doi: 10.1126/science.1246448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Grisebachstrasse 5, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gene Expression Regulation ; Intercellular Signaling Peptides and Proteins/genetics/*physiology ; Mice ; Mice, Knockout ; Motor Neurons/*metabolism ; Movement ; Muscle Fibers, Skeletal/physiology ; Muscle, Skeletal/innervation/*physiology ; Potassium Channels, Voltage-Gated/genetics ; Receptors, Notch/*physiology ; Signal Transduction ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-01-11
    Description: It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauli, Andrea -- Norris, Megan L -- Valen, Eivind -- Chew, Guo-Liang -- Gagnon, James A -- Zimmerman, Steven -- Mitchell, Andrew -- Ma, Jiao -- Dubrulle, Julien -- Reyon, Deepak -- Tsai, Shengdar Q -- Joung, J Keith -- Saghatelian, Alan -- Schier, Alexander F -- K99 HD076935/HD/NICHD NIH HHS/ -- R01 GM056211/GM/NIGMS NIH HHS/ -- R01 GM102491/GM/NIGMS NIH HHS/ -- R01 HG005111/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):1248636. doi: 10.1126/science.1248636. Epub 2014 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24407481" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cell Movement ; Chemokine CXCL12/metabolism ; Frameshift Mutation ; Gastrulation/genetics/*physiology ; Molecular Sequence Data ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-11-29
    Description: T cell responses are initiated by antigen and promoted by a range of costimulatory signals. Understanding how T cells integrate alternative signal combinations and make decisions affecting immune response strength or tolerance poses a considerable theoretical challenge. Here, we report that T cell receptor (TCR) and costimulatory signals imprint an early, cell-intrinsic, division fate, whereby cells effectively count through generations before returning automatically to a quiescent state. This autonomous program can be extended by cytokines. Signals from the TCR, costimulatory receptors, and cytokines add together using a linear division calculus, allowing the strength of a T cell response to be predicted from the sum of the underlying signal components. These data resolve a long-standing costimulation paradox and provide a quantitative paradigm for therapeutically manipulating immune response strength.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marchingo, Julia M -- Kan, Andrey -- Sutherland, Robyn M -- Duffy, Ken R -- Wellard, Cameron J -- Belz, Gabrielle T -- Lew, Andrew M -- Dowling, Mark R -- Heinzel, Susanne -- Hodgkin, Philip D -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1123-7. doi: 10.1126/science.1260044.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. ; Hamilton Institute, National University of Ireland, Maynooth, Ireland. ; Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. The Royal Melbourne Hospital, Parkville, VIC, Australia. ; Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. hodgkin@wehi.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cytokines/*immunology ; *Immune Tolerance ; Lymphocyte Activation ; Mice ; Receptors, Antigen, T-Cell/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-10-04
    Description: Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clevers, Hans -- Loh, Kyle M -- Nusse, Roel -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):1248012. doi: 10.1126/science.1248012. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, 3584CT Utrecht, Netherlands. ; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. ; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. rnusse@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; Cell Division ; Hair Follicle/physiology ; Humans ; Intestines/physiology ; Mammary Glands, Human/physiology ; Regeneration/genetics/*physiology ; Signal Transduction ; Stem Cell Niche/physiology ; Stem Cells/cytology/metabolism/*physiology ; Transcription, Genetic ; Wnt Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-04-20
    Description: Most animals sleep more early in life than in adulthood, but the function of early sleep is not known. Using Drosophila, we found that increased sleep in young flies was associated with an elevated arousal threshold and resistance to sleep deprivation. Excess sleep results from decreased inhibition of a sleep-promoting region by a specific dopaminergic circuit. Experimental hyperactivation of this circuit in young flies results in sleep loss and lasting deficits in adult courtship behaviors. These deficits are accompanied by impaired development of a single olfactory glomerulus, VA1v, which normally displays extensive sleep-dependent growth after eclosion. Our results demonstrate that sleep promotes normal brain development that gives rise to an adult behavior critical for species propagation and suggest that rapidly growing regions of the brain are most susceptible to sleep perturbations early in life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayser, Matthew S -- Yue, Zhifeng -- Sehgal, Amita -- R25MH060490/MH/NIMH NIH HHS/ -- T32 HL007713/HL/NHLBI NIH HHS/ -- T32HL07713/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):269-74. doi: 10.1126/science.1250553.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arousal ; Brain/growth & development/physiology ; Courtship ; Dopamine/metabolism ; Dopaminergic Neurons/*physiology ; Drosophila/genetics/growth & development/*physiology ; Female ; Male ; Models, Animal ; Neural Pathways/physiology ; Olfactory Bulb/growth & development/physiology ; Sexual Behavior, Animal ; Signal Transduction ; *Sleep ; Sleep Deprivation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-07-19
    Description: Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Munoz, Elena -- Arboleda-Estudillo, Yohanna -- Otu, Hasan H -- Cibelli, Jose B -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):822-5. doi: 10.1126/science.1254745. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LARCEL, Laboratorio Andaluz de Reprogramacion Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Andalucia, 29590, Spain. ; Department of Genetics and Bioengineering, Istanbul Bilgi University 34060, Istanbul, Turkey. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. ; LARCEL, Laboratorio Andaluz de Reprogramacion Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Andalucia, 29590, Spain. Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA. Department of Physiology, Michigan State University, East Lansing, MI 48824, USA. cibelli@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035411" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Cycle Proteins/genetics/*metabolism ; Cell Dedifferentiation ; Cell Differentiation ; *Cellular Reprogramming ; Embryonic Stem Cells/cytology/physiology ; Fibroblasts/cytology/physiology ; Growth Differentiation Factor 9/metabolism ; Histone Chaperones/genetics/*metabolism ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Metaphase ; Octamer Transcription Factor-3/metabolism ; Oocytes/cytology/physiology ; Signal Transduction ; Transcriptional Activation ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-10-25
    Description: Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naive and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naive cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naive cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334155/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334155/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krishnaswamy, Smita -- Spitzer, Matthew H -- Mingueneau, Michael -- Bendall, Sean C -- Litvin, Oren -- Stone, Erica -- Pe'er, Dana -- Nolan, Garry P -- 1K01DK095008/DK/NIDDK NIH HHS/ -- 1R01CA130826/CA/NCI NIH HHS/ -- 1U54CA121852-01A1/CA/NCI NIH HHS/ -- CA 09-011/CA/NCI NIH HHS/ -- HHSN268201000034C/HV/NHLBI NIH HHS/ -- HHSN272200700038C/PHS HHS/ -- HV-10-05/HV/NHLBI NIH HHS/ -- K01 DK095008/DK/NIDDK NIH HHS/ -- P01 CA034233/CA/NCI NIH HHS/ -- R00 GM104148/GM/NIGMS NIH HHS/ -- R01 CA130826/CA/NCI NIH HHS/ -- S10RR027582-01/RR/NCRR NIH HHS/ -- U19 AI057229/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 CA149145/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1250689. doi: 10.1126/science.1250689. Epub 2014 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA. ; Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA. ; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. ; Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. ; Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA. dpeer@biology.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology ; Computer Simulation ; Image Cytometry ; Male ; Mice ; Mice, Mutant Strains ; Mitogen-Activated Protein Kinase 1/genetics ; Receptors, Antigen, T-Cell/*metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction ; Single-Cell Analysis/*methods ; Systems Biology/*methods ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-03-01
    Description: Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane-associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Tongda -- Dai, Ning -- Chen, Jisheng -- Nagawa, Shingo -- Cao, Min -- Li, Hongjiang -- Zhou, Zimin -- Chen, Xu -- De Rycke, Riet -- Rakusova, Hana -- Wang, Wuyi -- Jones, Alan M -- Friml, Jiri -- Patterson, Sara E -- Bleecker, Anthony B -- Yang, Zhenbiao -- GM065989/GM/NIGMS NIH HHS/ -- GM081451/GM/NIGMS NIH HHS/ -- R01 GM081451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1025-8. doi: 10.1126/science.1245125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578577" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics ; Cell Membrane/*enzymology ; Indoleacetic Acids/*metabolism ; Plant Leaves/enzymology/genetics ; Plant Proteins/*metabolism ; Protein Kinases/genetics/*metabolism ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-01-18
    Description: Btk29A is the Drosophila ortholog of the mammalian Bruton's tyrosine kinase (Btk), mutations of which in humans cause a heritable immunodeficiency disease. Btk29A mutations stabilized the proliferating cystoblast fate, leading to an ovarian tumor. This phenotype was rescued by overexpression of wild-type Btk29A and phenocopied by the interference of Wnt4-beta-catenin signaling or its putative downstream nuclear protein Piwi in somatic escort cells. Btk29A and mammalian Btk directly phosphorylated tyrosine residues of beta-catenin, leading to the up-regulation of its transcriptional activity. Thus, we identify a transcriptional switch involving the kinase Btk29A/Btk and its phosphorylation target, beta-catenin, which functions downstream of Wnt4 in escort cells to terminate Drosophila germ cell proliferation through up-regulation of piwi expression. This signaling mechanism likely represents a versatile developmental switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada-Kawaguchi, Noriko -- Nore, Beston F -- Kuwada, Yusuke -- Smith, C I Edvard -- Yamamoto, Daisuke -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):294-7. doi: 10.1126/science.1244512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*biosynthesis ; *Cell Proliferation ; DNA Breaks, Double-Stranded ; Drosophila Proteins/*biosynthesis/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; Genomic Instability ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Transcription, Genetic ; Tyrosine/genetics/metabolism ; Up-Regulation ; Wnt Proteins/genetics/*metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-04-26
    Description: Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action, we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrillo, Ezequiel -- Godoy Herz, Micaela A -- Fuchs, Armin -- Reifer, Dominik -- Fuller, John -- Yanovsky, Marcelo J -- Simpson, Craig -- Brown, John W S -- Barta, Andrea -- Kalyna, Maria -- Kornblihtt, Alberto R -- BB/G024979/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P 26333/Austrian Science Fund FWF/Austria -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):427-30. doi: 10.1126/science.1250322. Epub 2014 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio de Fisiologia y Biologia Molecular, Departamento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763593" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Cell Nucleus/genetics ; Chloroplasts/*metabolism ; Circadian Clocks ; Dibromothymoquinone/pharmacology ; Diuron/pharmacology ; Electron Transport/drug effects ; *Gene Expression Regulation, Plant ; Light ; Models, Biological ; Oxidation-Reduction ; Photosynthesis/drug effects ; Plant Leaves/metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Plastoquinone/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Seedlings/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-05-09
    Description: Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being rediscovered as regulators of several diseases, including cancer. Here we show that in mice, mammary tumor growth induces the accumulation of tumor-associated macrophages (TAMs) that are phenotypically and functionally distinct from mammary tissue macrophages (MTMs). TAMs express the adhesion molecule Vcam1 and proliferate upon their differentiation from inflammatory monocytes, but do not exhibit an "alternatively activated" phenotype. TAM terminal differentiation depends on the transcriptional regulator of Notch signaling, RBPJ; and TAM, but not MTM, depletion restores tumor-infiltrating cytotoxic T cell responses and suppresses tumor growth. These findings reveal the ontogeny of TAMs and a discrete tumor-elicited inflammatory response, which may provide new opportunities for cancer immunotherapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franklin, Ruth A -- Liao, Will -- Sarkar, Abira -- Kim, Myoungjoo V -- Bivona, Michael R -- Liu, Kang -- Pamer, Eric G -- Li, Ming O -- AI101251/AI/NIAID NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI101251/AI/NIAID NIH HHS/ -- R37 AI039031/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 May 23;344(6186):921-5. doi: 10.1126/science.1252510. Epub 2014 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA. ; New York Genome Center, New York, NY 10022, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. ; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. lim@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812208" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line, Tumor ; Cell Proliferation ; Female ; Inflammation/immunology/pathology ; Macrophages/*immunology ; Mammary Neoplasms, Animal/*immunology/*pathology ; Mice ; Mice, Inbred C57BL ; Monocyte-Macrophage Precursor Cells/immunology ; Receptors, Notch/metabolism ; Signal Transduction ; Vascular Cell Adhesion Molecule-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-05-17
    Description: Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 x 10(6) pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, 〉99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split-green flourescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Alexander M -- Xuan, Yuanhu -- Xu, Meng -- Wang, Rui-Sheng -- Ho, Cheng-Hsun -- Lalonde, Sylvie -- You, Chang Hun -- Sardi, Maria I -- Parsa, Saman A -- Smith-Valle, Erika -- Su, Tianying -- Frazer, Keith A -- Pilot, Guillaume -- Pratelli, Rejane -- Grossmann, Guido -- Acharya, Biswa R -- Hu, Heng-Cheng -- Engineer, Cawas -- Villiers, Florent -- Ju, Chuanli -- Takeda, Kouji -- Su, Zhao -- Dong, Qunfeng -- Assmann, Sarah M -- Chen, Jin -- Kwak, June M -- Schroeder, Julian I -- Albert, Reka -- Rhee, Seung Y -- Frommer, Wolf B -- New York, N.Y. -- Science. 2014 May 16;344(6185):711-6. doi: 10.1126/science.1251358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. ; Department of Physics, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic University and State University, Blacksburg, VA 24061, USA. ; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. ; Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. wfrommer@stanford.edu srhee@carnegiescience.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833385" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; Membrane Proteins/genetics/*metabolism ; *Protein Interaction Maps ; Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-11-02
    Description: Neurotrophins regulate diverse aspects of neuronal development and plasticity, but their precise in vivo functions during neural circuit assembly in the central brain remain unclear. We show that the neurotrophin receptor tropomyosin-related kinase C (TrkC) is required for dendritic growth and branching of mouse cerebellar Purkinje cells. Sparse TrkC knockout reduced dendrite complexity, but global Purkinje cell knockout had no effect. Removal of the TrkC ligand neurotrophin-3 (NT-3) from cerebellar granule cells, which provide major afferent input to developing Purkinje cell dendrites, rescued the dendrite defects caused by sparse TrkC disruption in Purkinje cells. Our data demonstrate that NT-3 from presynaptic neurons (granule cells) is required for TrkC-dependent competitive dendrite morphogenesis in postsynaptic neurons (Purkinje cells)--a previously unknown mechanism of neural circuit development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joo, William -- Hippenmeyer, Simon -- Luo, Liqun -- 5 F31 NS071697/NS/NINDS NIH HHS/ -- F31 NS071697/NS/NINDS NIH HHS/ -- R01 NS050835/NS/NINDS NIH HHS/ -- R01-NS050835/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):626-9. doi: 10.1126/science.1258996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. lluo@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359972" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nerve Net/cytology/*growth & development ; *Neurogenesis ; Neurotrophin 3/*metabolism ; Purkinje Cells/*cytology/metabolism ; Receptor, trkC/genetics/*metabolism ; Signal Transduction ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-11-29
    Description: The capacity of human norovirus (NoV), which causes 〉90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-lambda, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldridge, Megan T -- Nice, Timothy J -- McCune, Broc T -- Yokoyama, Christine C -- Kambal, Amal -- Wheadon, Michael -- Diamond, Michael S -- Ivanova, Yulia -- Artyomov, Maxim -- Virgin, Herbert W -- 1F31CA177194/CA/NCI NIH HHS/ -- 5T32AI007163/AI/NIAID NIH HHS/ -- 5T32CA009547/CA/NCI NIH HHS/ -- F31 CA177194/CA/NCI NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U19 AI106772/AI/NIAID NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):266-9. doi: 10.1126/science.1258025. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25431490" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Caliciviridae Infections/drug therapy/immunology/microbiology/*virology ; Cytokines/*physiology ; Female ; Gastroenteritis/drug therapy/immunology/microbiology/*virology ; Intestines/*microbiology/virology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; *Microbiota/drug effects ; Norovirus/immunology/*physiology ; Receptors, Cytokine/genetics/metabolism ; Signal Transduction ; *Symbiosis ; Viral Load ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-07-22
    Description: Rheumatoid arthritis is a chronic autoinflammatory disease that affects 1-2% of the world's population and is characterized by widespread joint inflammation. Interleukin-1 is an important mediator of cartilage destruction in rheumatic diseases, but our understanding of the upstream mechanisms leading to production of interleukin-1beta in rheumatoid arthritis is limited by the absence of suitable mouse models of the disease in which inflammasomes contribute to pathology. Myeloid-cell-specific deletion of the rheumatoid arthritis susceptibility gene A20/Tnfaip3 in mice (A20(myel-KO) mice) triggers a spontaneous erosive polyarthritis that resembles rheumatoid arthritis in patients. Rheumatoid arthritis in A20(myel-KO) mice is not rescued by deletion of tumour necrosis factor receptor 1 (ref. 2). Here we show, however, that it crucially relies on the Nlrp3 inflammasome and interleukin-1 receptor signalling. Macrophages lacking A20 have increased basal and lipopolysaccharide-induced expression levels of the inflammasome adaptor Nlrp3 and proIL-1beta. As a result, A20-deficiency in macrophages significantly enhances Nlrp3 inflammasome-mediated caspase-1 activation, pyroptosis and interleukin-1beta secretion by soluble and crystalline Nlrp3 stimuli. In contrast, activation of the Nlrc4 and AIM2 inflammasomes is not altered. Importantly, increased Nlrp3 inflammasome activation contributes to the pathology of rheumatoid arthritis in vivo, because deletion of Nlrp3, caspase-1 and the interleukin-1 receptor markedly protects against rheumatoid-arthritis-associated inflammation and cartilage destruction in A20(myel-KO) mice. These results reveal A20 as a novel negative regulator of Nlrp3 inflammasome activation, and describe A20(myel-KO) mice as the first experimental model to study the role of inflammasomes in the pathology of rheumatoid arthritis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126806/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126806/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vande Walle, Lieselotte -- Van Opdenbosch, Nina -- Jacques, Peggy -- Fossoul, Amelie -- Verheugen, Eveline -- Vogel, Peter -- Beyaert, Rudi -- Elewaut, Dirk -- Kanneganti, Thirumala-Devi -- van Loo, Geert -- Lamkanfi, Mohamed -- 281600/European Research Council/International -- AI101935/AI/NIAID NIH HHS/ -- AR056296/AR/NIAMS NIH HHS/ -- CA163507/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):69-73. doi: 10.1038/nature13322. Epub 2014 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Medical Protein Research, VIB, Ghent B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium. ; Department of Rheumatology, Ghent University, Ghent B-9000, Belgium. ; Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Inflammation Research Center, VIB, Ghent B-9052, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium. ; 1] Inflammation Research Center, VIB, Ghent B-9052, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium [3]. ; 1] Department of Medical Protein Research, VIB, Ghent B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043000" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/metabolism ; Arthritis, Rheumatoid/immunology/*metabolism/pathology/prevention & control ; Calcium-Binding Proteins/metabolism ; Carrier Proteins/*metabolism ; Caspase 1/deficiency/metabolism ; Cysteine Endopeptidases/deficiency/*metabolism ; DNA-Binding Proteins ; Disease Models, Animal ; Female ; Inflammasomes/*metabolism ; Interleukin-1/metabolism ; Intracellular Signaling Peptides and Proteins/deficiency/*metabolism ; Macrophages/metabolism ; Male ; Mice ; Mice, Knockout ; Nuclear Proteins/metabolism ; Phenotype ; Receptors, Interleukin-1/deficiency/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-12-10
    Description: A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jandzik, David -- Garnett, Aaron T -- Square, Tyler A -- Cattell, Maria V -- Yu, Jr-Kai -- Medeiros, Daniel M -- England -- Nature. 2015 Feb 26;518(7540):534-7. doi: 10.1038/nature14000. Epub 2014 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Zoology, Comenius University, Bratislava 84215, Slovakia. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Cartilage/cytology/metabolism ; Fibroblast Growth Factors/metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental/genetics ; Genes, Reporter/genetics ; *Head ; Lancelets/*anatomy & histology/cytology/*growth & development ; Larva/anatomy & histology/cytology ; Models, Biological ; Mouth/anatomy & histology ; Neural Crest/cytology ; SOXE Transcription Factors/genetics/metabolism ; Signal Transduction ; *Skull/cytology/metabolism ; Vertebrates/*anatomy & histology ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: Invasion of microbial DNA into the cytoplasm of animal cells triggers a cascade of host immune reactions that help clear the infection; however, self DNA in the cytoplasm can cause autoimmune diseases. Biochemical approaches led to the identification of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) as a cytosolic DNA sensor that triggers innate immune responses. Here, we show that cells from cGAS-deficient (cGas(-/-)) mice, including fibroblasts, macrophages, and dendritic cells, failed to produce type I interferons and other cytokines in response to DNA transfection or DNA virus infection. cGas(-/-) mice were more susceptible to lethal infection with herpes simplex virus 1 (HSV1) than wild-type mice. We also show that cGAMP is an adjuvant that boosts antigen-specific T cell activation and antibody production in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xiao-Dong -- Wu, Jiaxi -- Gao, Daxing -- Wang, Hua -- Sun, Lijun -- Chen, Zhijian J -- 5T32AI070116/AI/NIAID NIH HHS/ -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1390-4. doi: 10.1126/science.1244040. Epub 2013 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23989956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/biosynthesis ; DNA, Viral/genetics/immunology ; Dendritic Cells/immunology ; Fibroblasts/immunology ; Herpes Simplex/*immunology ; *Herpesvirus 1, Human ; Interferon Regulatory Factor-3/genetics ; Interferon-beta/*biosynthesis/genetics ; Lymphocyte Activation ; Macrophages/immunology ; Mice ; Mice, Knockout ; Nucleotidyltransferases/genetics/*immunology ; Signal Transduction ; T-Lymphocytes/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-11-10
    Description: Environmental and hormonal signals cause reorganization of microtubule arrays in higher plants, but the mechanisms driving these transitions have remained elusive. The organization of these arrays is required to direct morphogenesis. We discovered that microtubule severing by the protein katanin plays a crucial and unexpected role in the reorientation of cortical arrays, as triggered by blue light. Imaging and genetic experiments revealed that phototropin photoreceptors stimulate katanin-mediated severing specifically at microtubule intersections, leading to the generation of new microtubules at these locations. We show how this activity serves as the basis for a mechanism that amplifies microtubules orthogonal to the initial array, thereby driving array reorientation. Our observations show how severing is used constructively to build a new microtubule array.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindeboom, Jelmer J -- Nakamura, Masayoshi -- Hibbel, Anneke -- Shundyak, Kostya -- Gutierrez, Ryan -- Ketelaar, Tijs -- Emons, Anne Mie C -- Mulder, Bela M -- Kirik, Viktor -- Ehrhardt, David W -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1245533. doi: 10.1126/science.1245533. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200811" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; Arabidopsis/genetics/growth & development/*metabolism/*ultrastructure ; Arabidopsis Proteins/genetics/*metabolism ; Hypocotyl/metabolism/ultrastructure ; Light ; Microtubules/*metabolism/ultrastructure ; Phosphoproteins/metabolism ; *Phototropism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-23
    Description: In many mammalian tissues, mature differentiated cells are replaced by self-renewing stem cells, either continuously during homeostasis or in response to challenge and injury. For example, hematopoietic stem cells generate all mature blood cells, including monocytes, which have long been thought to be the major source of tissue macrophages. Recently, however, major macrophage populations were found to be derived from embryonic progenitors and to renew independently of hematopoietic stem cells. This process may not require progenitors, as mature macrophages can proliferate in response to specific stimuli indefinitely and without transformation or loss of functional differentiation. These findings suggest that macrophages are mature differentiated cells that may have a self-renewal potential similar to that of stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sieweke, Michael H -- Allen, Judith E -- MR/J001929/1/Medical Research Council/United Kingdom -- MR/K01207X1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):1242974. doi: 10.1126/science.1242974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Universite, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cytokines/metabolism ; Embryonic Stem Cells/cytology ; Humans ; Macrophages/*cytology ; Mice ; Monocytes/cytology ; Rats ; Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-10-05
    Description: Mitochondrial morphology is crucial for tissue homeostasis, but its role in cell differentiation is unclear. We found that mitochondrial fusion was required for proper cardiomyocyte development. Ablation of mitochondrial fusion proteins Mitofusin 1 and 2 in the embryonic mouse heart, or gene-trapping of Mitofusin 2 or Optic atrophy 1 in mouse embryonic stem cells (ESCs), arrested mouse heart development and impaired differentiation of ESCs into cardiomyocytes. Gene expression profiling revealed decreased levels of transcription factors transforming growth factor-beta/bone morphogenetic protein, serum response factor, GATA4, and myocyte enhancer factor 2, linked to increased Ca(2+)-dependent calcineurin activity and Notch1 signaling that impaired ESC differentiation. Orchestration of cardiomyocyte differentiation by mitochondrial morphology reveals how mitochondria, Ca(2+), and calcineurin interact to regulate Notch1 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasahara, Atsuko -- Cipolat, Sara -- Chen, Yun -- Dorn, Gerald W 2nd -- Scorrano, Luca -- GPP10005/Telethon/Italy -- R01 HL059888/HL/NHLBI NIH HHS/ -- R01 HL59888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):734-7. doi: 10.1126/science.1241359. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Differentiation/genetics/*physiology ; GTP Phosphohydrolases/genetics/metabolism ; Gene Expression Profiling ; Heart/embryology ; Mice ; Mice, Knockout ; Mitochondrial Dynamics/genetics/*physiology ; Myocytes, Cardiac/*cytology/ultrastructure ; Receptor, Notch1/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-06-08
    Description: Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Christian H -- Healey, Eleanor -- van Erp, Susan -- Bishop, Benjamin -- Tang, Chenxiang -- Gilbert, Robert J C -- Aricescu, A Radu -- Pasterkamp, R Jeroen -- Siebold, Christian -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 097301/Wellcome Trust/United Kingdom -- A14414/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):77-80. doi: 10.1126/science.1232322. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. christian@strubi.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biophysical Phenomena ; Cell Adhesion Molecules, Neuronal/*chemistry/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Membrane Proteins/*chemistry ; Mutation ; Oligopeptides/chemistry ; Protein Structure, Tertiary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-02-23
    Description: Cellular growth signals stimulate anabolic processes. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase that senses growth signals to regulate anabolic growth and proliferation. Activation of mTORC1 led to the acute stimulation of metabolic flux through the de novo pyrimidine synthesis pathway. mTORC1 signaling posttranslationally regulated this metabolic pathway via its downstream target ribosomal protein S6 kinase 1 (S6K1), which directly phosphorylates S1859 on CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase), the enzyme that catalyzes the first three steps of de novo pyrimidine synthesis. Growth signaling through mTORC1 thus stimulates the production of new nucleotides to accommodate an increase in RNA and DNA synthesis needed for ribosome biogenesis and anabolic growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Sahra, Issam -- Howell, Jessica J -- Asara, John M -- Manning, Brendan D -- F32 DK095508/DK/NIDDK NIH HHS/ -- F32-DK095508/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01-CA120964/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30-CA006516/CA/NCI NIH HHS/ -- R01 CA122617/CA/NCI NIH HHS/ -- R01-CA122617/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1323-8. doi: 10.1126/science.1228792. Epub 2013 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23429703" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Animals ; Aspartate Carbamoyltransferase/*metabolism ; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/*metabolism ; Dihydroorotase/*metabolism ; HeLa Cells ; Humans ; Mice ; Multiprotein Complexes/*metabolism ; Pyrimidines/*biosynthesis ; Ribosomal Protein S6 Kinases/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-10-26
    Description: The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/C(CCS52A2) ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heyman, Jefri -- Cools, Toon -- Vandenbussche, Filip -- Heyndrickx, Ken S -- Van Leene, Jelle -- Vercauteren, Ilse -- Vanderauwera, Sandy -- Vandepoele, Klaas -- De Jaeger, Geert -- Van Der Straeten, Dominique -- De Veylder, Lieven -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):860-3. doi: 10.1126/science.1240667. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158907" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome/metabolism ; Arabidopsis/*cytology/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Cell Cycle/genetics/physiology ; Cell Cycle Proteins/metabolism ; Cell Division/genetics/*physiology ; Mitosis/genetics/physiology ; Peptide Hormones/genetics/metabolism ; Plant Roots/*cytology/*growth & development ; Proteolysis ; Signal Transduction ; Stem Cell Niche ; Stem Cells/*physiology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-23
    Description: Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Pia L -- Harada, Takamasa -- Christian, David A -- Pantano, Diego A -- Tsai, Richard K -- Discher, Dennis E -- 8UL1TR000003/TR/NCATS NIH HHS/ -- P01-DK032094/DK/NIDDK NIH HHS/ -- P30-DK090969/DK/NIDDK NIH HHS/ -- R01 EB007049/EB/NIBIB NIH HHS/ -- R01 HL062352/HL/NHLBI NIH HHS/ -- R01-EB007049/EB/NIBIB NIH HHS/ -- R01-HL062352/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):971-5. doi: 10.1126/science.1229568.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD47/chemistry/immunology/metabolism ; Antigens, Differentiation/*metabolism ; Antineoplastic Agents/administration & dosage ; Autoantigens ; Blood Circulation ; Diagnostic Imaging/methods ; Drug Delivery Systems/*methods ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; *Nanoparticles/administration & dosage/analysis ; Neoplasms/chemistry/diagnosis/drug therapy ; Paclitaxel/administration & dosage ; Particle Size ; Peptide Fragments/chemical synthesis/chemistry/immunology/*metabolism ; Phagocytes/immunology/metabolism ; *Phagocytosis ; Receptors, Immunologic/immunology/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-03-29
    Description: Protein N-myristoylation is a 14-carbon fatty-acid modification that is conserved across eukaryotic species and occurs on nearly 1% of the cellular proteome. The ability of the myristoyl group to facilitate dynamic protein-protein and protein-membrane interactions (known as the myristoyl switch) makes it an essential feature of many signal transduction systems. Thus pathogenic strategies that facilitate protein demyristoylation would markedly alter the signalling landscape of infected host cells. Here we describe an irreversible mechanism of protein demyristoylation catalysed by invasion plasmid antigen J (IpaJ), a previously uncharacterized Shigella flexneri type III effector protein with cysteine protease activity. A yeast genetic screen for IpaJ substrates identified ADP-ribosylation factor (ARF)1p and ARF2p, small molecular mass GTPases that regulate cargo transport through the Golgi apparatus. Mass spectrometry showed that IpaJ cleaved the peptide bond between N-myristoylated glycine-2 and asparagine-3 of human ARF1, thereby providing a new mechanism for host secretory inhibition by a bacterial pathogen. We further demonstrate that IpaJ cleaves an array of N-myristoylated proteins involved in cellular growth, signal transduction, autophagasome maturation and organelle function. Taken together, these findings show a previously unrecognized pathogenic mechanism for the site-specific elimination of N-myristoyl protein modification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722872/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722872/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnaevskiy, Nikolay -- Fox, Thomas G -- Plymire, Daniel A -- Ertelt, James M -- Weigele, Bethany A -- Selyunin, Andrey S -- Way, Sing Sing -- Patrie, Steven M -- Alto, Neal M -- 5T32AI007520/AI/NIAID NIH HHS/ -- R01 AI083359/AI/NIAID NIH HHS/ -- R01 AI087830/AI/NIAID NIH HHS/ -- R01 AI100934/AI/NIAID NIH HHS/ -- R01 GM100486/GM/NIGMS NIH HHS/ -- R01AI083359/AI/NIAID NIH HHS/ -- R01GM100486/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 4;496(7443):106-9. doi: 10.1038/nature12004. Epub 2013 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535599" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1/chemistry/metabolism ; ADP-Ribosylation Factors/metabolism ; Amino Acid Sequence ; Animals ; Antigens, Bacterial/*metabolism ; Asparagine/metabolism ; Autophagy ; Biocatalysis ; Cysteine Proteases/metabolism ; Dysentery, Bacillary ; Female ; Glycine/metabolism ; Golgi Apparatus/metabolism/pathology ; HEK293 Cells ; HeLa Cells ; Humans ; Listeria monocytogenes/physiology ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Myristic Acid/*metabolism ; Phagosomes/metabolism ; *Protein Processing, Post-Translational ; *Proteolysis ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Sequence Alignment ; Shigella flexneri/enzymology/*metabolism ; Signal Transduction ; Substrate Specificity ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-01-29
    Description: Insulin resistance is a fundamental pathogenic factor present in various metabolic disorders including obesity and type 2 diabetes. Although skeletal muscle accounts for 70-90% of insulin-stimulated glucose disposal, the mechanism underlying muscle insulin resistance is poorly understood. Here we show in mice that muscle-specific mitsugumin 53 (MG53; also called TRIM72) mediates the degradation of the insulin receptor and insulin receptor substrate 1 (IRS1), and when upregulated, causes metabolic syndrome featuring insulin resistance, obesity, hypertension and dyslipidaemia. MG53 expression is markedly elevated in models of insulin resistance, and MG53 overexpression suffices to trigger muscle insulin resistance and metabolic syndrome sequentially. Conversely, ablation of MG53 prevents diet-induced metabolic syndrome by preserving the insulin receptor, IRS1 and insulin signalling integrity. Mechanistically, MG53 acts as an E3 ligase targeting the insulin receptor and IRS1 for ubiquitin-dependent degradation, comprising a central mechanism controlling insulin signal strength in skeletal muscle. These findings define MG53 as a novel therapeutic target for treating metabolic disorders and associated cardiovascular complications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Ruisheng -- Peng, Wei -- Zhang, Yan -- Lv, Fengxiang -- Wu, Hong-Kun -- Guo, Jiaojiao -- Cao, Yongxing -- Pi, Yanbin -- Zhang, Xin -- Jin, Li -- Zhang, Mao -- Jiang, Peng -- Liu, Fenghua -- Meng, Shaoshuai -- Zhang, Xiuqin -- Jiang, Ping -- Cao, Chun-Mei -- Xiao, Rui-Ping -- England -- Nature. 2013 Feb 21;494(7437):375-9. doi: 10.1038/nature11834. Epub 2013 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23354051" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/genetics/*metabolism ; Diabetes Mellitus, Type 2 ; Diet, High-Fat ; Dyslipidemias/metabolism ; Gene Deletion ; Hypertension/metabolism ; *Insulin/metabolism ; Insulin Receptor Substrate Proteins/metabolism ; Insulin Resistance/genetics/*physiology ; Male ; Metabolic Syndrome X/enzymology/genetics/*metabolism/prevention & control ; Mice ; Obesity/chemically induced/metabolism ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Receptor, Insulin/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-11-05
    Description: The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(DeltaIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(DeltaIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(DeltaIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(DeltaIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949438/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949438/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alenghat, Theresa -- Osborne, Lisa C -- Saenz, Steven A -- Kobuley, Dmytro -- Ziegler, Carly G K -- Mullican, Shannon E -- Choi, Inchan -- Grunberg, Stephanie -- Sinha, Rohini -- Wynosky-Dolfi, Meghan -- Snyder, Annelise -- Giacomin, Paul R -- Joyce, Karen L -- Hoang, Tram B -- Bewtra, Meenakshi -- Brodsky, Igor E -- Sonnenberg, Gregory F -- Bushman, Frederic D -- Won, Kyoung-Jae -- Lazar, Mitchell A -- Artis, David -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- AI106697/AI/NIAID NIH HHS/ -- DK043806/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- F31-GM082187/GM/NIGMS NIH HHS/ -- K08 DK084347/DK/NIDDK NIH HHS/ -- K08 DK093784/DK/NIDDK NIH HHS/ -- K08-DK084347/DK/NIDDK NIH HHS/ -- K08-DK093784/DK/NIDDK NIH HHS/ -- P01 AI106697/AI/NIAID NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- P30-DK19525/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- R21 AI105346/AI/NIAID NIH HHS/ -- R21-AI105346/AI/NIAID NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- T32-RR007063/RR/NCRR NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):153-7. doi: 10.1038/nature12687. Epub 2013 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24185009" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Bacteria/genetics ; Colitis, Ulcerative/enzymology/genetics/microbiology ; Crohn Disease/enzymology/genetics/microbiology ; Female ; Gene Deletion ; Gene Expression Profiling ; *Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; *Homeostasis ; Humans ; Intestinal Mucosa/*enzymology/pathology ; Intestines/*microbiology ; Male ; Mice ; Mice, Inbred C57BL ; Paneth Cells/cytology/metabolism ; RNA, Ribosomal, 16S/genetics ; Signal Transduction ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-06-21
    Description: Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischaemia-induced infarct. Hence there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium. Past studies have shown that fish and amphibians and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration. Here we have developed, in the zebrafish (Danio rerio), a combination of fluorescent reporter transgenes, genetic fate-mapping strategies and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. We observed that Notch signalling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signalling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ruilin -- Han, Peidong -- Yang, Hongbo -- Ouyang, Kunfu -- Lee, Derek -- Lin, Yi-Fan -- Ocorr, Karen -- Kang, Guson -- Chen, Ju -- Stainier, Didier Y R -- Yelon, Deborah -- Chi, Neil C -- DP2 OD007464/OD/NIH HHS/ -- HL104239/HL/NHLBI NIH HHS/ -- HL54737/HL/NHLBI NIH HHS/ -- OD007464/OD/NIH HHS/ -- R01 HD069305/HD/NICHD NIH HHS/ -- R01 HL054737/HL/NHLBI NIH HHS/ -- R01 HL069594/HL/NHLBI NIH HHS/ -- R01 HL104239/HL/NHLBI NIH HHS/ -- R01 HL108599/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Jun 27;498(7455):497-501. doi: 10.1038/nature12322. Epub 2013 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23783515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; *Cell Transdifferentiation ; *Cellular Reprogramming ; Heart/embryology/*physiology ; Heart Atria/cytology/embryology ; Heart Ventricles/cytology ; Myocardium/*cytology/metabolism ; Myocytes, Cardiac/cytology/metabolism ; Receptor, Notch1/metabolism ; Regeneration/*physiology ; Signal Transduction ; Zebrafish/embryology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-05-31
    Description: Cholesterol is a structural component of the cell and is indispensable for normal cellular function, although its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (apoA-I) and the apoA-I-containing high-density lipoprotein (HDL). Maintaining efficient cholesterol efflux is essential for normal cellular function. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that apoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells to HDL and thereby regulates angiogenesis. AIBP- and HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 (also known as KDR) dimerization and signalling and inhibits vascular endothelial growth factor-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Notably, Aibp, a zebrafish homologue of human AIBP, regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell-autonomous regulator of angiogenesis. aibp knockdown results in dysregulated sprouting/branching angiogenesis, whereas forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1 (also known as Abca1a) Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1 Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from endothelial cells and that effective cholesterol efflux is critical for proper angiogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Longhou -- Choi, Soo-Ho -- Baek, Ji Sun -- Liu, Chao -- Almazan, Felicidad -- Ulrich, Florian -- Wiesner, Philipp -- Taleb, Adam -- Deer, Elena -- Pattison, Jennifer -- Torres-Vazquez, Jesus -- Li, Andrew C -- Miller, Yury I -- HL055798/HL/NHLBI NIH HHS/ -- HL093767/HL/NHLBI NIH HHS/ -- HL114734/HL/NHLBI NIH HHS/ -- K99 HL114734/HL/NHLBI NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R00 HL114734/HL/NHLBI NIH HHS/ -- R01 HL093767/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Jun 6;498(7452):118-22. doi: 10.1038/nature12166. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719382" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/deficiency/genetics/metabolism ; Animals ; Biological Transport ; Blood Vessels/embryology ; Carrier Proteins/genetics/*metabolism/secretion ; Cholesterol/analysis/*metabolism ; Embryo, Nonmammalian/blood supply/metabolism ; Endothelial Cells/metabolism ; Human Umbilical Vein Endothelial Cells ; Humans ; Lipoproteins, HDL/metabolism ; Membrane Lipids/metabolism ; Membrane Microdomains/chemistry/metabolism ; Neovascularization, Physiologic/*physiology ; Protein Multimerization ; Signal Transduction ; Vascular Endothelial Growth Factor Receptor-2/chemistry/metabolism ; Zebrafish/embryology/*metabolism ; Zebrafish Proteins/deficiency/genetics/*metabolism/secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-06-14
    Description: 53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fradet-Turcotte, Amelie -- Canny, Marella D -- Escribano-Diaz, Cristina -- Orthwein, Alexandre -- Leung, Charles C Y -- Huang, Hao -- Landry, Marie-Claude -- Kitevski-LeBlanc, Julianne -- Noordermeer, Sylvie M -- Sicheri, Frank -- Durocher, Daniel -- 84297-1/Canadian Institutes of Health Research/Canada -- 84297-2/Canadian Institutes of Health Research/Canada -- MOP84297/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 4;499(7456):50-4. doi: 10.1038/nature12318. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760478" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA-Binding Proteins/chemistry/deficiency/genetics ; Female ; Histones/*chemistry/*metabolism ; Humans ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lysine/*metabolism ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clague, Michael J -- England -- Nature. 2013 May 2;497(7447):49-50. doi: 10.1038/497049a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636394" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cysteine/*metabolism ; Endopeptidases/chemistry/metabolism ; Humans ; Hydrogen Peroxide/metabolism ; Oxidation-Reduction ; Proteolysis ; Reactive Oxygen Species/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-09
    Description: The extraction of directional motion information from changing retinal images is one of the earliest and most important processing steps in any visual system. In the fly optic lobe, two parallel processing streams have been anatomically described, leading from two first-order interneurons, L1 and L2, via T4 and T5 cells onto large, wide-field motion-sensitive interneurons of the lobula plate. Therefore, T4 and T5 cells are thought to have a pivotal role in motion processing; however, owing to their small size, it is difficult to obtain electrical recordings of T4 and T5 cells, leaving their visual response properties largely unknown. We circumvent this problem by means of optical recording from these cells in Drosophila, using the genetically encoded calcium indicator GCaMP5 (ref. 2). Here we find that specific subpopulations of T4 and T5 cells are directionally tuned to one of the four cardinal directions; that is, front-to-back, back-to-front, upwards and downwards. Depending on their preferred direction, T4 and T5 cells terminate in specific sublayers of the lobula plate. T4 and T5 functionally segregate with respect to contrast polarity: whereas T4 cells selectively respond to moving brightness increments (ON edges), T5 cells only respond to moving brightness decrements (OFF edges). When the output from T4 or T5 cells is blocked, the responses of postsynaptic lobula plate neurons to moving ON (T4 block) or OFF edges (T5 block) are selectively compromised. The same effects are seen in turning responses of tethered walking flies. Thus, starting with L1 and L2, the visual input is split into separate ON and OFF pathways, and motion along all four cardinal directions is computed separately within each pathway. The output of these eight different motion detectors is then sorted such that ON (T4) and OFF (T5) motion detectors with the same directional tuning converge in the same layer of the lobula plate, jointly providing the input to downstream circuits and motion-driven behaviours.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisak, Matthew S -- Haag, Juergen -- Ammer, Georg -- Serbe, Etienne -- Meier, Matthias -- Leonhardt, Aljoscha -- Schilling, Tabea -- Bahl, Armin -- Rubin, Gerald M -- Nern, Aljoscha -- Dickson, Barry J -- Reiff, Dierk F -- Hopp, Elisabeth -- Borst, Alexander -- England -- Nature. 2013 Aug 8;500(7461):212-6. doi: 10.1038/nature12320.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Drosophila/cytology/*physiology ; Interneurons/physiology ; Locomotion/physiology ; Motion Perception/*physiology ; Neurons/physiology ; Signal Transduction ; Visual Pathways/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-10-04
    Description: Nutrient deprivation is a stimulus shared by both autophagy and the formation of primary cilia. The recently discovered role of primary cilia in nutrient sensing and signalling motivated us to explore the possible functional interactions between this signalling hub and autophagy. Here we show that part of the molecular machinery involved in ciliogenesis also participates in the early steps of the autophagic process. Signalling from the cilia, such as that from the Hedgehog pathway, induces autophagy by acting directly on essential autophagy-related proteins strategically located in the base of the cilium by ciliary trafficking proteins. Whereas abrogation of ciliogenesis partially inhibits autophagy, blockage of autophagy enhances primary cilia growth and cilia-associated signalling during normal nutritional conditions. We propose that basal autophagy regulates ciliary growth through the degradation of proteins required for intraflagellar transport. Compromised ability to activate the autophagic response may underlie some common ciliopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896125/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896125/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pampliega, Olatz -- Orhon, Idil -- Patel, Bindi -- Sridhar, Sunandini -- Diaz-Carretero, Antonio -- Beau, Isabelle -- Codogno, Patrice -- Satir, Birgit H -- Satir, Peter -- Cuervo, Ana Maria -- AG031782/AG/NIA NIH HHS/ -- AG038072/AG/NIA NIH HHS/ -- DK098408/DK/NIDDK NIH HHS/ -- P01 AG031782/AG/NIA NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 DK098408/DK/NIDDK NIH HHS/ -- R37 AG021904/AG/NIA NIH HHS/ -- England -- Nature. 2013 Oct 10;502(7470):194-200. doi: 10.1038/nature12639. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics/*physiology ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cilia/metabolism/*physiology ; Hedgehog Proteins/metabolism ; Mice ; Protein Transport ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-02-15
    Description: G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatakrishnan, A J -- Deupi, Xavier -- Lebon, Guillaume -- Tate, Christopher G -- Schertler, Gebhard F -- Babu, M Madan -- MC_U105185859/Medical Research Council/United Kingdom -- MC_U105197215/Medical Research Council/United Kingdom -- U105185859/Medical Research Council/United Kingdom -- U105197215/Medical Research Council/United Kingdom -- England -- Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. ajv@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23407534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; Humans ; Ligands ; Protein Conformation ; Protein Folding ; Receptors, G-Protein-Coupled/agonists/antagonists & ; inhibitors/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-01-22
    Description: Mitotic cells assume a spherical shape by increasing their surface tension and osmotic pressure by extensively reorganizing their interphase actin cytoskeleton into a cortical meshwork and their microtubules into the mitotic spindle. Mitotic entry is known to interfere with tissue morphogenetic events that require cell-shape changes controlled by the interphase cytoskeleton, such as apical constriction. However, here we show that mitosis plays an active role in the epithelial invagination of the Drosophila melanogaster tracheal placode. Invagination begins with a slow phase under the control of epidermal growth factor receptor (EGFR) signalling; in this process, the central apically constricted cells, which are surrounded by intercalating cells, form a shallow pit. This slow phase is followed by a fast phase, in which the pit is rapidly depressed, accompanied by mitotic entry, which leads to the internalization of all the cells in the placode. We found that mitotic cell rounding, but not cell division, of the central cells in the placode is required to accelerate invagination, in conjunction with EGFR-induced myosin II contractility in the surrounding cells. We propose that mitotic cell rounding causes the epithelium to buckle under pressure and acts as a switch for morphogenetic transition at the appropriate time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, Takefumi -- Hayashi, Shigeo -- England -- Nature. 2013 Feb 7;494(7435):125-9. doi: 10.1038/nature11792. Epub 2013 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Shape/*physiology ; Drosophila melanogaster/anatomy & histology/*cytology/*embryology ; Epidermal Growth Factor/metabolism ; Epithelial Cells/*cytology ; Female ; Fibroblast Growth Factors/metabolism ; *Mitosis ; Myosin Type II/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Respiratory System/anatomy & histology/cytology/embryology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-06
    Description: Regulatory T cells (Treg cells) have a crucial role in the immune system by preventing autoimmunity, limiting immunopathology, and maintaining immune homeostasis. However, they also represent a major barrier to effective anti-tumour immunity and sterilizing immunity to chronic viral infections. The transcription factor Foxp3 has a major role in the development and programming of Treg cells. The relative stability of Treg cells at inflammatory disease sites has been a highly contentious subject. There is considerable interest in identifying pathways that control the stability of Treg cells as many immune-mediated diseases are characterized by either exacerbated or limited Treg-cell function. Here we show that the immune-cell-expressed ligand semaphorin-4a (Sema4a) and the Treg-cell-expressed receptor neuropilin-1 (Nrp1) interact both in vitro, to potentiate Treg-cell function and survival, and in vivo, at inflammatory sites. Using mice with a Treg-cell-restricted deletion of Nrp1, we show that Nrp1 is dispensable for suppression of autoimmunity and maintenance of immune homeostasis, but is required by Treg cells to limit anti-tumour immune responses and to cure established inflammatory colitis. Sema4a ligation of Nrp1 restrained Akt phosphorylation cellularly and at the immunologic synapse by phosphatase and tensin homologue (PTEN), which increased nuclear localization of the transcription factor Foxo3a. The Nrp1-induced transcriptome promoted Treg-cell stability by enhancing quiescence and survival factors while inhibiting programs that promote differentiation. Importantly, this Nrp1-dependent molecular program is evident in intra-tumoral Treg cells. Our data support a model in which Treg-cell stability can be subverted in certain inflammatory sites, but is maintained by a Sema4a-Nrp1 axis, highlighting this pathway as a potential therapeutic target that could limit Treg-cell-mediated tumour-induced tolerance without inducing autoimmunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867145/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867145/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delgoffe, Greg M -- Woo, Seng-Ryong -- Turnis, Meghan E -- Gravano, David M -- Guy, Cliff -- Overacre, Abigail E -- Bettini, Matthew L -- Vogel, Peter -- Finkelstein, David -- Bonnevier, Jody -- Workman, Creg J -- Vignali, Dario A A -- AI039480/AI/NIAID NIH HHS/ -- CA21765/CA/NCI NIH HHS/ -- F32 AI098383/AI/NIAID NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI039480/AI/NIAID NIH HHS/ -- R01 AI091977/AI/NIAID NIH HHS/ -- T32 AI007610/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):252-6. doi: 10.1038/nature12428. Epub 2013 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23913274" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity/immunology ; Cell Survival ; Colitis/immunology ; Female ; Forkhead Transcription Factors/metabolism ; HEK293 Cells ; Homeostasis/immunology ; Humans ; Immune Tolerance/immunology ; Immunological Synapses ; Lymphocytes, Tumor-Infiltrating/cytology/immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasms/genetics/immunology/pathology ; Neuropilin-1/deficiency/*metabolism ; PTEN Phosphohydrolase/metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; Semaphorins/*metabolism ; Signal Transduction ; T-Lymphocytes, Regulatory/cytology/*immunology/*metabolism ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-02-08
    Description: Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Lepr(db/db) mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornfeld, Jan-Wilhelm -- Baitzel, Catherina -- Konner, A Christine -- Nicholls, Hayley T -- Vogt, Merly C -- Herrmanns, Karolin -- Scheja, Ludger -- Haumaitre, Cecile -- Wolf, Anna M -- Knippschild, Uwe -- Seibler, Jost -- Cereghini, Silvia -- Heeren, Joerg -- Stoffel, Markus -- Bruning, Jens C -- England -- Nature. 2013 Feb 7;494(7435):111-5. doi: 10.1038/nature11793.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Neurological Research, Gleueler Strasse 50a, 50931 Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23389544" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gene Expression Regulation ; *Gene Silencing ; Gluconeogenesis ; Glucose/biosynthesis/*metabolism ; Glucose Intolerance/genetics/metabolism ; Hepatocyte Nuclear Factor 1-beta/*deficiency/genetics/metabolism ; Humans ; Insulin/metabolism ; Insulin Resistance/genetics ; Liver/metabolism ; Mice ; MicroRNAs/biosynthesis/*genetics ; Obesity/*genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-10-04
    Description: The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(DeltaIEC)) or autophagy function (Atg16l1(DeltaIEC) or Atg7(DeltaIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(DeltaIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2alpha (eIF2alpha) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1alpha (IRE1alpha)-regulated NF-kappaB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1alpha activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-kappaB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adolph, Timon E -- Tomczak, Michal F -- Niederreiter, Lukas -- Ko, Hyun-Jeong -- Bock, Janne -- Martinez-Naves, Eduardo -- Glickman, Jonathan N -- Tschurtschenthaler, Markus -- Hartwig, John -- Hosomi, Shuhei -- Flak, Magdalena B -- Cusick, Jennifer L -- Kohno, Kenji -- Iwawaki, Takao -- Billmann-Born, Susanne -- Raine, Tim -- Bharti, Richa -- Lucius, Ralph -- Kweon, Mi-Na -- Marciniak, Stefan J -- Choi, Augustine -- Hagen, Susan J -- Schreiber, Stefan -- Rosenstiel, Philip -- Kaser, Arthur -- Blumberg, Richard S -- 100140/Wellcome Trust/United Kingdom -- 260961/European Research Council/International -- DK0034854/DK/NIDDK NIH HHS/ -- DK044319/DK/NIDDK NIH HHS/ -- DK051362/DK/NIDDK NIH HHS/ -- DK053056/DK/NIDDK NIH HHS/ -- DK088199/DK/NIDDK NIH HHS/ -- G1002610/Medical Research Council/United Kingdom -- R01 DK044319/DK/NIDDK NIH HHS/ -- R01 DK051362/DK/NIDDK NIH HHS/ -- R01 DK053056/DK/NIDDK NIH HHS/ -- R01 DK088199/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):272-6. doi: 10.1038/nature12599. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089213" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics ; Carrier Proteins/genetics/metabolism ; Cell Line ; DNA-Binding Proteins/genetics/metabolism ; Endoplasmic Reticulum Stress/genetics ; Inflammation ; Intestinal Diseases/genetics/*physiopathology ; Intestinal Mucosa/cytology/*pathology ; Mice ; Paneth Cells/*pathology ; Signal Transduction ; Transcription Factors/genetics/metabolism ; Unfolded Protein Response/physiology ; eIF-2 Kinase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-03-15
    Description: In mammals, sex differentiation of primordial germ cells (PGCs) is determined by extrinsic cues from the environment. In mouse female PGCs, expression of stimulated by retinoic acid gene 8 (Stra8) and meiosis are induced in response to retinoic acid provided from the mesonephroi. Given the widespread role of retinoic acid signalling during development, the molecular mechanisms that enable PGCs to express Stra8 and enter meiosis in a timely manner are unknown. Here we identify gene-dosage-dependent roles in PGC development for Ring1 and Rnf2, two central components of the Polycomb repressive complex 1 (PRC1). Both paralogues are essential for PGC development between days 10.5 and 11.5 of gestation. Rnf2 is subsequently required in female PGCs to maintain high levels of Oct4 (also known as Pou5f1) and Nanog expression, and to prevent premature induction of meiotic gene expression and entry into meiotic prophase. Chemical inhibition of retinoic acid signalling partially suppresses precocious Oct4 downregulation and Stra8 activation in Rnf2-deficient female PGCs. Chromatin immunoprecipitation analyses show that Stra8 is a direct target of PRC1 and PRC2 in PGCs. These data demonstrate the importance of PRC1 gene dosage in PGC development and in coordinating the timing of sex differentiation of female PGCs by antagonizing extrinsic retinoic acid signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yokobayashi, Shihori -- Liang, Ching-Yeu -- Kohler, Hubertus -- Nestorov, Peter -- Liu, Zichuan -- Vidal, Miguel -- van Lohuizen, Maarten -- Roloff, Tim C -- Peters, Antoine H F M -- England -- Nature. 2013 Mar 14;495(7440):236-40. doi: 10.1038/nature11918.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23486062" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Chromatin/genetics/metabolism ; Down-Regulation ; Female ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/metabolism ; Male ; Meiosis ; Mice ; Octamer Transcription Factor-3/genetics/metabolism ; Ovum/*cytology/*metabolism ; Polycomb Repressive Complex 1/deficiency/*metabolism ; Polycomb Repressive Complex 2/metabolism ; Proteins/genetics ; Sex Characteristics ; Sex Differentiation/*physiology ; Signal Transduction ; Time Factors ; Transcription, Genetic ; Tretinoin/metabolism ; Ubiquitin-Protein Ligases/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-01-18
    Description: Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of 'when' rather than 'if'. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection against a growing list of age-related pathologies. Characterized inhibitors of this pathway are already clinically approved, and others are under development. Although adverse side effects currently preclude use in otherwise healthy individuals, drugs that target the mTOR pathway could one day become widely used to slow ageing and reduce age-related pathologies in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Simon C -- Rabinovitch, Peter S -- Kaeberlein, Matt -- P30 AG013280/AG/NIA NIH HHS/ -- R01 AG031108/AG/NIA NIH HHS/ -- R01 AG038550/AG/NIA NIH HHS/ -- R01 AG039390/AG/NIA NIH HHS/ -- R01AG031108/AG/NIA NIH HHS/ -- R01AG039390/AG/NIA NIH HHS/ -- T32 AG000057/AG/NIA NIH HHS/ -- T32AG000057/AG/NIA NIH HHS/ -- England -- Nature. 2013 Jan 17;493(7432):338-45. doi: 10.1038/nature11861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23325216" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*metabolism/pathology ; Animals ; Humans ; Insulin/metabolism ; Insulin-Like Growth Factor I/metabolism ; Longevity/genetics ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-10-25
    Description: Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Apostolou, Effie -- Hochedlinger, Konrad -- R01 HD058013/HD/NICHD NIH HHS/ -- England -- Nature. 2013 Oct 24;502(7472):462-71. doi: 10.1038/nature12749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, Boston, Massachusetts 02114, USA. [2] Harvard Stem Cell Institute, 1350 Masschusetts Avenue, Cambridge, Massachusetts 02138, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. [4] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinogenesis/genetics ; Cell Differentiation/genetics ; Cell Fusion ; *Cellular Reprogramming ; Chromatin/*genetics/*metabolism ; DNA Methylation ; Epigenesis, Genetic ; Germ Cells/cytology/metabolism ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Nuclear Transfer Techniques ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-04-26
    Description: Postnatal/adult neural stem cells (NSCs) within the rodent subventricular zone (SVZ; also called subependymal zone) generate doublecortin (Dcx)(+) neuroblasts that migrate and integrate into olfactory bulb circuitry. Continuous production of neuroblasts is controlled by the SVZ microenvironmental niche. It is generally thought that enhancing the neurogenic activities of endogenous NSCs may provide needed therapeutic options for disease states and after brain injury. However, SVZ NSCs can also differentiate into astrocytes. It remains unclear whether there are conditions that favour astrogenesis over neurogenesis in the SVZ niche, and whether astrocytes produced there have different properties compared with astrocytes produced elsewhere in the brain. Here we show in mice that SVZ-generated astrocytes express high levels of thrombospondin 4 (Thbs4), a secreted homopentameric glycoprotein, in contrast to cortical astrocytes, which express low levels of Thbs4. We found that localized photothrombotic/ischaemic cortical injury initiates a marked increase in Thbs4(hi) astrocyte production from the postnatal SVZ niche. Tamoxifen-inducible nestin-creER(tm)4 lineage tracing demonstrated that it is these SVZ-generated Thbs4(hi) astrocytes, and not Dcx(+) neuroblasts, that home-in on the injured cortex. This robust post-injury astrogenic response required SVZ Notch activation modulated by Thbs4 via direct Notch1 receptor binding and endocytosis to activate downstream signals, including increased Nfia transcription factor expression important for glia production. Consequently, Thbs4 homozygous knockout mice (Thbs4(KO/KO)) showed severe defects in cortical-injury-induced SVZ astrogenesis, instead producing cells expressing Dcx migrating from SVZ to the injury sites. These alterations in cellular responses resulted in abnormal glial scar formation after injury, and significantly increased microvascular haemorrhage into the brain parenchyma of Thbs4(KO/KO) mice. Taken together, these findings have important implications for post-injury applications of endogenous and transplanted NSCs in the therapeutic setting, as well as disease states where Thbs family members have important roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benner, Eric J -- Luciano, Dominic -- Jo, Rebecca -- Abdi, Khadar -- Paez-Gonzalez, Patricia -- Sheng, Huaxin -- Warner, David S -- Liu, Chunlei -- Eroglu, Cagla -- Kuo, Chay T -- DP2 OD004453/OD/NIH HHS/ -- DP2 OD004453-01/OD/NIH HHS/ -- K12 HD043494/HD/NICHD NIH HHS/ -- P41 EB015897/EB/NIBIB NIH HHS/ -- P41 RR005959/RR/NCRR NIH HHS/ -- R01 DA031833/DA/NIDA NIH HHS/ -- R01 MH096979/MH/NIMH NIH HHS/ -- R01 NS078192/NS/NINDS NIH HHS/ -- T32 GM008441/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 16;497(7449):369-73. doi: 10.1038/nature12069. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉George and Jean Brumley Neonatal-Perinatal Research Institute, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615612" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*cytology/*metabolism ; Brain Injuries/*metabolism/*pathology ; Cell Lineage ; Cell Movement ; Cerebral Cortex/cytology/metabolism/pathology ; Cerebral Ventricles/*cytology ; Cicatrix/metabolism/pathology ; Endocytosis ; Mice ; Mice, Knockout ; NFI Transcription Factors/metabolism ; Neural Stem Cells/cytology ; Neuroglia/cytology/metabolism/pathology ; Receptor, Notch1/*metabolism ; Signal Transduction ; Thrombospondins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-12-03
    Description: CAAX proteins have essential roles in multiple signalling pathways, controlling processes such as proliferation, differentiation and carcinogenesis. The approximately 120 mammalian CAAX proteins function at cellular membranes and include the Ras superfamily of small GTPases, nuclear lamins, the gamma-subunit of heterotrimeric GTPases, and several protein kinases and phosphatases. The proper localization of CAAX proteins to cell membranes is orchestrated by a series of post-translational modifications of the carboxy-terminal CAAX motifs (where C is cysteine, A is an aliphatic amino acid and X is any amino acid). These reactions involve prenylation of the cysteine residue, cleavage at the AAX tripeptide and methylation of the carboxyl-prenylated cysteine residue. The major CAAX protease activity is mediated by Rce1 (Ras and a-factor converting enzyme 1), an intramembrane protease (IMP) of the endoplasmic reticulum. Information on the architecture and proteolytic mechanism of Rce1 has been lacking. Here we report the crystal structure of a Methanococcus maripaludis homologue of Rce1, whose endopeptidase specificity for farnesylated peptides mimics that of eukaryotic Rce1. Its structure, comprising eight transmembrane alpha-helices, and catalytic site are distinct from those of other IMPs. The catalytic residues are located approximately 10 A into the membrane and are exposed to the cytoplasm and membrane through a conical cavity that accommodates the prenylated CAAX substrate. We propose that the farnesyl lipid binds to a site at the opening of two transmembrane alpha-helices, which results in the scissile bond being positioned adjacent to a glutamate-activated nucleophilic water molecule. This study suggests that Rce1 is the founding member of a novel IMP family, the glutamate IMPs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manolaridis, Ioannis -- Kulkarni, Kiran -- Dodd, Roger B -- Ogasawara, Satoshi -- Zhang, Ziguo -- Bineva, Ganka -- O'Reilly, Nicola -- Hanrahan, Sarah J -- Thompson, Andrew J -- Cronin, Nora -- Iwata, So -- Barford, David -- 100140/Wellcome Trust/United Kingdom -- A2560/Cancer Research UK/United Kingdom -- A7403/Cancer Research UK/United Kingdom -- A8022/Cancer Research UK/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):301-5. doi: 10.1038/nature12754. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2]. ; 1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2] [3] Division of Biological Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India (K.K.); Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK (R.B.D.). ; 1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2] Division of Biological Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India (K.K.); Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK (R.B.D.). ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. ; Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Life Sciences, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291792" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry/metabolism ; *Biocatalysis ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Endopeptidases/chemistry/metabolism ; Endoplasmic Reticulum/enzymology ; Escherichia coli Proteins/chemistry/metabolism ; Glutamic Acid/metabolism ; Humans ; Membrane Proteins/*chemistry/metabolism ; Metalloendopeptidases/chemistry/metabolism ; Methanococcus/*enzymology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Peptide Hydrolases/*chemistry/classification/*metabolism ; *Prenylation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins p21(ras)/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-02-08
    Description: Mammalian telomeres repress DNA-damage activation at natural chromosome ends by recruiting specific inhibitors of the DNA-damage machinery that form a protective complex termed shelterin. Within this complex, TRF2 (also known as TERF2) has a crucial role in end protection through the suppression of ATM activation and the formation of end-to-end chromosome fusions. Here we address the molecular properties of TRF2 that are both necessary and sufficient to protect chromosome ends in mouse embryonic fibroblasts. Our data support a two-step mechanism for TRF2-mediated end protection. First, the dimerization domain of TRF2 is required to inhibit ATM activation, the key initial step involved in the activation of a DNA-damage response (DDR). Next, TRF2 independently suppresses the propagation of DNA-damage signalling downstream of ATM activation. This novel modulation of the DDR at telomeres occurs at the level of the E3 ubiquitin ligase RNF168 (ref. 3). Inhibition of RNF168 at telomeres involves the deubiquitinating enzyme BRCC3 and the ubiquitin ligase UBR5, and is sufficient to suppress chromosome end-to-end fusions. This two-step mechanism for TRF2-mediated end protection helps to explain the apparent paradox of frequent localization of DDR proteins at functional telomeres without concurrent induction of detrimental DNA-repair activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okamoto, Keiji -- Bartocci, Cristina -- Ouzounov, Iliana -- Diedrich, Jolene K -- Yates, John R 3rd -- Denchi, Eros Lazzerini -- 5P41RR011823-17/RR/NCRR NIH HHS/ -- 8 P41 GM103533-17/GM/NIGMS NIH HHS/ -- AG038677/AG/NIA NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 AG038677/AG/NIA NIH HHS/ -- England -- Nature. 2013 Feb 28;494(7438):502-5. doi: 10.1038/nature11873. Epub 2013 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Biology and Genomic Stability, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23389450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Mammalian/genetics/metabolism ; DNA Damage ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Endopeptidases/deficiency/metabolism ; Enzyme Activation ; Mice ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Signal Transduction ; Telomere/genetics/metabolism ; Telomeric Repeat Binding Protein 2/chemistry/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-11-01
    Description: Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3beta signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gafni, Ohad -- Weinberger, Leehee -- Mansour, Abed AlFatah -- Manor, Yair S -- Chomsky, Elad -- Ben-Yosef, Dalit -- Kalma, Yael -- Viukov, Sergey -- Maza, Itay -- Zviran, Asaf -- Rais, Yoach -- Shipony, Zohar -- Mukamel, Zohar -- Krupalnik, Vladislav -- Zerbib, Mirie -- Geula, Shay -- Caspi, Inbal -- Schneir, Dan -- Shwartz, Tamar -- Gilad, Shlomit -- Amann-Zalcenstein, Daniela -- Benjamin, Sima -- Amit, Ido -- Tanay, Amos -- Massarwa, Rada -- Novershtern, Noa -- Hanna, Jacob H -- England -- Nature. 2013 Dec 12;504(7479):282-6. doi: 10.1038/nature12745. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2]. ; 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [3] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel [4]. ; 1] Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel [2] The Department of Cell and Developmental Biology, Sackler Medical School, Tel-Aviv University, Israel. ; Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. ; 1] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. ; The Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel. ; The Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/cytology ; Cellular Reprogramming ; Chimera/embryology ; Chromatin/metabolism ; DNA Methylation ; Embryo, Mammalian/cytology/embryology ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Female ; Germ Layers/cytology ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/*cytology/metabolism/transplantation ; Male ; Mice ; Morula/cytology ; Organogenesis ; Promoter Regions, Genetic/genetics ; Regenerative Medicine ; Reproducibility of Results ; Signal Transduction ; X Chromosome Inactivation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-07-19
    Description: The epigenetic regulation of imprinted genes by monoallelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and development. Imprinted genes were recently shown to be expressed in mammalian adult stem cells to support self-renewal of neural and lung stem cells; however, a role for imprinting per se in adult stem cells remains elusive. Here we show upregulation of growth-restricting imprinted genes, including in the H19-Igf2 locus, in long-term haematopoietic stem cells and their downregulation upon haematopoietic stem cell activation and proliferation. A differentially methylated region upstream of H19 (H19-DMR), serving as the imprinting control region, determines the reciprocal expression of H19 from the maternal allele and Igf2 from the paternal allele. In addition, H19 serves as a source of miR-675, which restricts Igf1r expression. We demonstrate that conditional deletion of the maternal but not the paternal H19-DMR reduces adult haematopoietic stem cell quiescence, a state required for long-term maintenance of haematopoietic stem cells, and compromises haematopoietic stem cell function. Maternal-specific H19-DMR deletion results in activation of the Igf2-Igfr1 pathway, as shown by the translocation of phosphorylated FoxO3 (an inactive form) from nucleus to cytoplasm and the release of FoxO3-mediated cell cycle arrest, thus leading to increased activation, proliferation and eventual exhaustion of haematopoietic stem cells. Mechanistically, maternal-specific H19-DMR deletion leads to Igf2 upregulation and increased translation of Igf1r, which is normally suppressed by H19-derived miR-675. Similarly, genetic inactivation of Igf1r partly rescues the H19-DMR deletion phenotype. Our work establishes a new role for this unique form of epigenetic control at the H19-Igf2 locus in maintaining adult stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896866/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896866/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatraman, Aparna -- He, Xi C -- Thorvaldsen, Joanne L -- Sugimura, Ryohichi -- Perry, John M -- Tao, Fang -- Zhao, Meng -- Christenson, Matthew K -- Sanchez, Rebeca -- Yu, Jaclyn Y -- Peng, Lai -- Haug, Jeffrey S -- Paulson, Ariel -- Li, Hua -- Zhong, Xiao-bo -- Clemens, Thomas L -- Bartolomei, Marisa S -- Li, Linheng -- GM51279/GM/NIGMS NIH HHS/ -- R01 GM087376/GM/NIGMS NIH HHS/ -- R37 GM051279/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Aug 15;500(7462):345-9. doi: 10.1038/nature12303. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863936" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology/*physiology ; Animals ; Epigenesis, Genetic/genetics ; Gene Expression Regulation, Developmental ; *Genomic Imprinting ; Insulin-Like Growth Factor II/*genetics/*metabolism ; Mice ; RNA, Long Noncoding/*genetics/*metabolism ; Receptor, IGF Type 1/genetics ; Signal Transduction ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-06-25
    Description: The STIM1-ORAI1 pathway of store-operated Ca(2+) entry is an essential component of cellular Ca(2+) signalling. STIM1 senses depletion of intracellular Ca(2+) stores in response to physiological stimuli, and relocalizes within the endoplasmic reticulum to plasma-membrane-apposed junctions, where it recruits and gates open plasma membrane ORAI1 Ca(2+) channels. Here we use a genome-wide RNA interference screen in HeLa cells to identify filamentous septin proteins as crucial regulators of store-operated Ca(2+) entry. Septin filaments and phosphatidylinositol-4,5-bisphosphate (also known as PtdIns(4,5)P2) rearrange locally at endoplasmic reticulum-plasma membrane junctions before and during formation of STIM1-ORAI1 clusters, facilitating STIM1 targeting to these junctions and promoting the stable recruitment of ORAI1. Septin rearrangement at junctions is required for PtdIns(4,5)P2 reorganization and efficient STIM1-ORAI1 communication. Septins are known to demarcate specialized membrane regions such as dendritic spines, the yeast bud and the primary cilium, and to serve as membrane diffusion barriers and/or signalling hubs in cellular processes such as vesicle trafficking, cell polarity and cytokinesis. Our data show that septins also organize the highly localized plasma membrane domains that are important in STIM1-ORAI1 signalling, and indicate that septins may organize membrane microdomains relevant to other signalling processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Sonia -- Quintana, Ariel -- Findlay, Gregory M -- Mettlen, Marcel -- Baust, Beate -- Jain, Mohit -- Nilsson, Roland -- Rao, Anjana -- Hogan, Patrick G -- K08 HL107451/HL/NHLBI NIH HHS/ -- R01 AI040127/AI/NIAID NIH HHS/ -- R01 AI084167/AI/NIAID NIH HHS/ -- R01 R01GM73165/GM/NIGMS NIH HHS/ -- RC4 AI092763/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 11;499(7457):238-42. doi: 10.1038/nature12229. Epub 2013 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23792561" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/*metabolism ; Calcium Channels/metabolism ; Calcium Signaling ; Cell Membrane/metabolism ; Endoplasmic Reticulum/metabolism ; Genome, Human ; HeLa Cells ; Humans ; Membrane Proteins/metabolism ; NFATC Transcription Factors/*metabolism ; Neoplasm Proteins/metabolism ; Protein Transport ; *RNA Interference ; RNA, Small Interfering/*genetics ; Septins/deficiency/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-05-07
    Description: The coordination of stem- and blast-cell behaviours, such as self-renewal, differentiation and quiescence, with physiological changes underlies growth, regeneration and tissue homeostasis. Germline stem and somatic blast cells in newly hatched Caenorhabditis elegans larvae can suspend postembryonic development, which consists of diverse cellular events such as migration, proliferation and differentiation, until the nutritional state becomes favourable (termed L1 diapause). Although previous studies showed that the insulin/insulin-like growth factor (IGF) signalling (IIS) pathway regulates this developmental quiescence, the detailed mechanism by which the IIS pathway enables these multipotent cells to respond to nutrient availability is unknown. Here we show in C. elegans that the microRNA (miRNA) miR-235, a sole orthologue of mammalian miR-92 from the oncogenic miR-17-92 cluster, acts in the hypodermis and glial cells to arrest postembryonic developmental events in both neuroblasts and mesoblasts. Expression of mir-235 persists during L1 diapause, and decreases upon feeding in a manner dependent on the IIS pathway. Upregulation of one of the miR-235 targets, nhr-91, which encodes an orthologue of mammalian germ cell nuclear factor, is responsible for defects caused by loss of the miRNA. Our findings establish a novel role of a miR-92 orthologue in coupling blast-cell behaviours to the nutritional state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasuga, Hidefumi -- Fukuyama, Masamitsu -- Kitazawa, Aya -- Kontani, Kenji -- Katada, Toshiaki -- England -- Nature. 2013 May 23;497(7450):503-6. doi: 10.1038/nature12117. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644454" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Caenorhabditis elegans/*genetics/growth & development/immunology/*metabolism ; Down-Regulation ; Embryo, Nonmammalian/metabolism ; Food Deprivation ; Humans ; Insulin/metabolism ; Insulin-Like Growth Factor I/metabolism ; Larva/cytology/metabolism ; Lymphocyte Activation/*genetics/physiology ; MicroRNAs/*genetics/*metabolism ; Molecular Sequence Data ; Neural Stem Cells/cytology/metabolism ; Neuroglia/metabolism ; *Nutritional Status/genetics ; Signal Transduction ; Subcutaneous Tissue/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-04-02
    Description: Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns. However, these are produced by all microbes, regardless of their pathogenic potential. To distinguish virulent microbes from those with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that NOD1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of RAC1 and CDC42 by bacterial delivery or ectopic expression of SopE, a virulence factor of the enteric pathogen Salmonella, triggered the NOD1 signalling pathway, with consequent RIP2 (also known as RIPK2)-mediated induction of NF-kappaB-dependent inflammatory responses. Similarly, activation of the NOD1 signalling pathway by peptidoglycan required RAC1 activity. Furthermore, constitutively active forms of RAC1, CDC42 and RHOA activated the NOD1 signalling pathway. Our data identify the activation of small Rho GTPases as a pathogen-induced process sensed through the NOD1 signalling pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keestra, A Marijke -- Winter, Maria G -- Auburger, Josef J -- Frassle, Simon P -- Xavier, Mariana N -- Winter, Sebastian E -- Kim, Anita -- Poon, Victor -- Ravesloot, Marietta M -- Waldenmaier, Julian F T -- Tsolis, Renee M -- Eigenheer, Richard A -- Baumler, Andreas J -- AI044170/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- R01 AI044170/AI/NIAID NIH HHS/ -- R01 AI076246/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Apr 11;496(7444):233-7. doi: 10.1038/nature12025. Epub 2013 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23542589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Cytosol/metabolism ; Female ; HEK293 Cells ; HSP90 Heat-Shock Proteins/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nod1 Signaling Adaptor Protein/*metabolism ; Nod2 Signaling Adaptor Protein/metabolism ; Peptidoglycan/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism ; Salmonella typhimurium/genetics/*metabolism/*pathogenicity ; Signal Transduction ; Virulence Factors/metabolism ; cdc42 GTP-Binding Protein/metabolism ; rac1 GTP-Binding Protein/metabolism ; rho GTP-Binding Proteins/*metabolism ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-09
    Description: Behavioural responses to temperature are critical for survival, and animals from insects to humans show strong preferences for specific temperatures. Preferred temperature selection promotes avoidance of adverse thermal environments in the short term and maintenance of optimal body temperatures over the long term, but its molecular and cellular basis is largely unknown. Recent studies have generated conflicting views of thermal preference in Drosophila, attributing importance to either internal or peripheral warmth sensors. Here we reconcile these views by showing that thermal preference is not a singular response, but involves multiple systems relevant in different contexts. We found previously that the transient receptor potential channel TRPA1 acts internally to control the slowly developing preference response of flies exposed to a shallow thermal gradient. We now find that the rapid response of flies exposed to a steep warmth gradient does not require TRPA1; rather, the gustatory receptor GR28B(D) drives this behaviour through peripheral thermosensors. Gustatory receptors are a large gene family, widely studied in insect gustation and olfaction, and are implicated in host-seeking by insect disease vectors, but have not previously been implicated in thermosensation. At the molecular level, GR28B(D) misexpression confers thermosensitivity upon diverse cell types, suggesting that it is a warmth sensor. These data reveal a new type of thermosensory molecule and uncover a functional distinction between peripheral and internal warmth sensors in this tiny ectotherm reminiscent of thermoregulatory systems in larger, endothermic animals. The use of multiple, distinct molecules to respond to a given temperature, as observed here, may facilitate independent tuning of an animal's distinct thermosensory responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758369/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758369/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, Lina -- Bronk, Peter -- Chang, Elaine C -- Lowell, April M -- Flam, Juliette O -- Panzano, Vincent C -- Theobald, Douglas L -- Griffith, Leslie C -- Garrity, Paul A -- P01 GM103770/GM/NIGMS NIH HHS/ -- P01 NS044232/NS/NINDS NIH HHS/ -- R01 GM054408/GM/NIGMS NIH HHS/ -- R01 GM094468/GM/NIGMS NIH HHS/ -- R01 GM096053/GM/NIGMS NIH HHS/ -- R01 MH067284/MH/NIMH NIH HHS/ -- R01 MH094721/MH/NIMH NIH HHS/ -- R01GM094468/GM/NIGMS NIH HHS/ -- T32 GM007122/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Aug 29;500(7464):580-4. doi: 10.1038/nature12390. Epub 2013 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925112" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning/*physiology ; Drosophila Proteins/deficiency/genetics/*metabolism ; Drosophila melanogaster/genetics/*physiology ; Female ; *Hot Temperature ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction ; Smell ; TRPC Cation Channels/deficiency/genetics/metabolism ; *Taste ; Thermoreceptors/cytology/physiology ; Thermosensing/genetics/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-05-07
    Description: Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Chin Yee -- Jaalouk, Diana E -- Vartiainen, Maria K -- Lammerding, Jan -- BC102152/BC/NCI NIH HHS/ -- R01 HL082792/HL/NHLBI NIH HHS/ -- R01 NS059348/NS/NINDS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):507-11. doi: 10.1038/nature12105. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cornell University, Weill Institute for Cell and Molecular Biology/Department of Biomedical Engineering, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644458" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/*metabolism ; Active Transport, Cell Nucleus ; Animals ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytoskeleton/metabolism ; Fibroblasts/metabolism ; Gene Expression Regulation ; Heart/growth & development ; Lamin Type A/deficiency/genetics/*metabolism ; Male ; Membrane Proteins/*metabolism ; Mice ; Mutation ; Myocardium/metabolism ; Nuclear Proteins/*metabolism ; Serum Response Factor/*metabolism ; Signal Transduction ; Trans-Activators/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-10-22
    Description: A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-alpha signalling in these cells. Unexpectedly, we found that TNF-alpha-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Fulai -- Li, Yan -- Dixon, Jesse R -- Selvaraj, Siddarth -- Ye, Zhen -- Lee, Ah Young -- Yen, Chia-An -- Schmitt, Anthony D -- Espinoza, Celso A -- Ren, Bing -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50 GM085764-03/GM/NIGMS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):290-4. doi: 10.1038/nature12644. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141950" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromatin/chemistry/genetics/*metabolism ; *Chromosome Mapping ; Enhancer Elements, Genetic/physiology ; Gene Expression Regulation ; *Genome, Human ; Humans ; Imaging, Three-Dimensional ; Promoter Regions, Genetic/physiology ; Protein Binding ; Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-11-05
    Description: Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF-MEK-ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF-MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF-MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF-MEK-ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098832/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098832/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johannessen, Cory M -- Johnson, Laura A -- Piccioni, Federica -- Townes, Aisha -- Frederick, Dennie T -- Donahue, Melanie K -- Narayan, Rajiv -- Flaherty, Keith T -- Wargo, Jennifer A -- Root, David E -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2OD002750/OD/NIH HHS/ -- P01 CA163222/CA/NCI NIH HHS/ -- P50CA93683/CA/NCI NIH HHS/ -- R33 CA155554/CA/NCI NIH HHS/ -- U01 HG006492/HG/NHGRI NIH HHS/ -- U54 CA112962/CA/NCI NIH HHS/ -- U54 HG006093/HG/NHGRI NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):138-42. doi: 10.1038/nature12688. Epub 2013 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Broad Institute of Harvard University and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA [3] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24185007" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; CREB-Binding Protein/metabolism ; Cell Line, Tumor ; Cell Lineage ; Cyclic AMP/metabolism ; Drug Resistance, Neoplasm/*genetics ; Gene Expression Regulation, Neoplastic ; HEK293 Cells ; Humans ; Melanocytes/cytology/*drug effects/enzymology ; Melanoma/enzymology/physiopathology ; Mitogen-Activated Protein Kinases/*metabolism ; Protein Kinase Inhibitors/*pharmacology ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-05-28
    Description: The protein-tyrosine phosphatase SHP-1 has critical roles in immune signalling, but how mutations in SHP-1 cause inflammatory disease in humans remains poorly defined. Mice homozygous for the Tyr208Asn amino acid substitution in the carboxy terminus of SHP-1 (referred to as Ptpn6(spin) mice) spontaneously develop a severe inflammatory syndrome that resembles neutrophilic dermatosis in humans and is characterized by persistent footpad swelling and suppurative inflammation. Here we report that receptor-interacting protein 1 (RIP1)-regulated interleukin (IL)-1alpha production by haematopoietic cells critically mediates chronic inflammatory disease in Ptpn6(spin) mice, whereas inflammasome signalling and IL-1beta-mediated events are dispensable. IL-1alpha was also crucial for exacerbated inflammatory responses and unremitting tissue damage upon footpad microabrasion of Ptpn6(spin) mice. Notably, pharmacological and genetic blockade of the kinase RIP1 protected against wound-induced inflammation and tissue damage in Ptpn6(spin) mice, whereas RIP3 deletion failed to do so. Moreover, RIP1-mediated inflammatory cytokine production was attenuated by NF-kappaB and ERK inhibition. Together, our results indicate that wound-induced tissue damage and chronic inflammation in Ptpn6(spin) mice are critically dependent on RIP1-mediated IL-1alpha production, whereas inflammasome signalling and RIP3-mediated necroptosis are dispensable. Thus, we have unravelled a novel inflammatory circuit in which RIP1-mediated IL-1alpha secretion in response to deregulated SHP-1 activity triggers an inflammatory destructive disease that proceeds independently of inflammasomes and programmed necrosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lukens, John R -- Vogel, Peter -- Johnson, Gordon R -- Kelliher, Michelle A -- Iwakura, Yoichiro -- Lamkanfi, Mohamed -- Kanneganti, Thirumala-Devi -- AI101935/AI/NIAID NIH HHS/ -- AR056296/AR/NIAMS NIH HHS/ -- CA163507/CA/NCI NIH HHS/ -- R01 AI075118/AI/NIAID NIH HHS/ -- R01 AI101935/AI/NIAID NIH HHS/ -- R01 AR056296/AR/NIAMS NIH HHS/ -- R01 CA163507/CA/NCI NIH HHS/ -- England -- Nature. 2013 Jun 13;498(7453):224-7. doi: 10.1038/nature12174. Epub 2013 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Dermatitis/immunology/metabolism/pathology ; Disease Models, Animal ; Extremities/pathology ; Female ; Gene Deletion ; Humans ; *Inflammasomes/metabolism ; Inflammation/immunology/metabolism/pathology ; Interleukin-1alpha/deficiency/genetics/*metabolism/secretion ; Interleukin-1beta/metabolism ; Male ; Mice ; NF-kappa B/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/deficiency/genetics/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases/*metabolism ; Signal Transduction ; Wound Healing ; Wounds and Injuries/immunology/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-16
    Description: Tissue growth is the multifaceted outcome of a cell's intrinsic capabilities and its interactions with the surrounding environment. Decoding these complexities is essential for understanding human development and tumorigenesis. Here we tackle this problem by carrying out the first genome-wide RNA-interference-mediated screens in mice. Focusing on skin development and oncogenic (Hras(G12V)-induced) hyperplasia, our screens uncover previously unknown as well as anticipated regulators of embryonic epidermal growth. Among the top oncogenic screen hits are Mllt6 and the Wnt effector beta-catenin, which maintain Hras(G12V)-dependent hyperproliferation. We also expose beta-catenin as an unanticipated antagonist of normal epidermal growth, functioning through Wnt-independent intercellular adhesion. Finally, we validate functional significance in mouse and human cancers, thereby establishing the feasibility of in vivo mammalian genome-wide investigations to dissect tissue development and tumorigenesis. By documenting some oncogenic growth regulators, we pave the way for future investigations of other hits and raise promise for unearthing new targets for cancer therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774280/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774280/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beronja, Slobodan -- Janki, Peter -- Heller, Evan -- Lien, Wen-Hui -- Keyes, Brice E -- Oshimori, Naoki -- Fuchs, Elaine -- K99 AR061469/AR/NIAMS NIH HHS/ -- K99 CA178197/CA/NCI NIH HHS/ -- K99-AR061469/AR/NIAMS NIH HHS/ -- R37 AR027883/AR/NIAMS NIH HHS/ -- R37-AR27883/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):185-90. doi: 10.1038/nature12464. Epub 2013 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23945586" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinogenesis/*genetics/metabolism/*pathology ; Cell Adhesion ; Cell Proliferation ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Embryo, Mammalian/embryology/metabolism/pathology ; Epidermis/embryology/metabolism/*pathology ; Female ; Genome/genetics ; Humans ; Hyperplasia/genetics/metabolism/pathology ; Male ; Mice ; Neoplasm Proteins/deficiency/genetics/metabolism ; Neoplasms/*genetics/metabolism/*pathology ; Oncogene Protein p21(ras)/metabolism ; Oncogenes/*genetics ; *RNA Interference ; Reproducibility of Results ; Signal Transduction ; Skin Neoplasms/genetics/metabolism/pathology ; Time Factors ; Wnt Proteins/metabolism ; Wnt Signaling Pathway ; beta Catenin/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...