ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-14
    Description: Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaudhury, Dipesh -- Walsh, Jessica J -- Friedman, Allyson K -- Juarez, Barbara -- Ku, Stacy M -- Koo, Ja Wook -- Ferguson, Deveroux -- Tsai, Hsing-Chen -- Pomeranz, Lisa -- Christoffel, Daniel J -- Nectow, Alexander R -- Ekstrand, Mats -- Domingos, Ana -- Mazei-Robison, Michelle S -- Mouzon, Ezekiell -- Lobo, Mary Kay -- Neve, Rachael L -- Friedman, Jeffrey M -- Russo, Scott J -- Deisseroth, Karl -- Nestler, Eric J -- Han, Ming-Hu -- F31 MH095425/MH/NIMH NIH HHS/ -- F32 MH096464/MH/NIMH NIH HHS/ -- K99 MH094405/MH/NIMH NIH HHS/ -- R01 MH092306/MH/NIMH NIH HHS/ -- R25 GM064118/GM/NIGMS NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- T32 MH087004/MH/NIMH NIH HHS/ -- T32 MH096678/MH/NIMH NIH HHS/ -- England -- Nature. 2013 Jan 24;493(7433):532-6. doi: 10.1038/nature11713. Epub 2012 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Depression/etiology/*physiopathology ; Dopaminergic Neurons/*metabolism ; Food Preferences ; Male ; Mesencephalon/*cytology ; Mice ; Neural Pathways ; Nucleus Accumbens/physiology ; Optogenetics ; Phenotype ; Prefrontal Cortex/physiology ; *Social Behavior ; Stress, Psychological/complications/*physiopathology ; Sucrose/administration & dosage ; Time Factors ; Ventral Tegmental Area/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-11
    Description: beta-catenin is a multi-functional protein that has an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that in mice beta-catenin mediates pro-resilient and anxiolytic effects in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide beta-catenin enrichment mapping, we identify Dicer1-important in small RNA (for example, microRNA) biogenesis--as a beta-catenin target gene that mediates resilience. Small RNA profiling after excising beta-catenin from nucleus accumbens in the context of chronic stress reveals beta-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish beta-catenin as a critical regulator in the development of behavioural resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dias, Caroline -- Feng, Jian -- Sun, Haosheng -- Shao, Ning Yi -- Mazei-Robison, Michelle S -- Damez-Werno, Diane -- Scobie, Kimberly -- Bagot, Rosemary -- LaBonte, Benoit -- Ribeiro, Efrain -- Liu, XiaoChuan -- Kennedy, Pamela -- Vialou, Vincent -- Ferguson, Deveroux -- Pena, Catherine -- Calipari, Erin S -- Koo, Ja Wook -- Mouzon, Ezekiell -- Ghose, Subroto -- Tamminga, Carol -- Neve, Rachael -- Shen, Li -- Nestler, Eric J -- P50 MH096890/MH/NIMH NIH HHS/ -- R00 MH094405/MH/NIMH NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):51-5. doi: 10.1038/nature13976. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Department of Psychiatry, University of Texas Southwestern, Dallas, Texas 75390, USA. ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383518" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Animals ; DEAD-box RNA Helicases/*genetics/metabolism ; Depression/physiopathology ; Gene Expression Profiling ; *Gene Expression Regulation ; Genome-Wide Association Study ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*genetics/metabolism ; Neurons/metabolism ; *Resilience, Psychological ; Ribonuclease III/*genetics/metabolism ; Signal Transduction ; Stress, Physiological/*genetics ; beta Catenin/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-09
    Description: Brain-derived neurotrophic factor (BDNF) is a key positive regulator of neural plasticity, promoting, for example, the actions of stimulant drugs of abuse such as cocaine. We discovered a surprising opposite role for BDNF in countering responses to chronic morphine exposure. The suppression of BDNF in the ventral tegmental area (VTA) enhanced the ability of morphine to increase dopamine (DA) neuron excitability and promote reward. In contrast, optical stimulation of VTA DA terminals in nucleus accumbens (NAc) completely reversed the suppressive effect of BDNF on morphine reward. Furthermore, we identified numerous genes in the NAc, a major target region of VTA DA neurons, whose regulation by BDNF in the context of chronic morphine exposure mediated this counteractive function. These findings provide insight into the molecular basis of morphine-induced neuroadaptations in the brain's reward circuitry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547365/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547365/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koo, Ja Wook -- Mazei-Robison, Michelle S -- Chaudhury, Dipesh -- Juarez, Barbara -- LaPlant, Quincey -- Ferguson, Deveroux -- Feng, Jian -- Sun, Haosheng -- Scobie, Kimberly N -- Damez-Werno, Diane -- Crumiller, Marshall -- Ohnishi, Yoshinori N -- Ohnishi, Yoko H -- Mouzon, Ezekiell -- Dietz, David M -- Lobo, Mary Kay -- Neve, Rachael L -- Russo, Scott J -- Han, Ming-Hu -- Nestler, Eric J -- K99 MH094405/MH/NIMH NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- R01 DA014133/DA/NIDA NIH HHS/ -- R01 MH092306/MH/NIMH NIH HHS/ -- T32 MH087004/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):124-8. doi: 10.1126/science.1222265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042896" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/genetics/*physiology ; Dopamine/metabolism ; Dopaminergic Neurons/*drug effects/physiology ; Gene Expression Regulation ; Gene Knockdown Techniques ; Gene Knockout Techniques ; Male ; Mice ; Mice, Inbred C57BL ; Morphine/*pharmacology ; Morphine Dependence/genetics/*physiopathology ; Nucleus Accumbens/drug effects/physiopathology ; Photic Stimulation ; Receptor, trkB/genetics/physiology ; Ventral Tegmental Area/*drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...