ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-09
    Description: Brain-derived neurotrophic factor (BDNF) is a key positive regulator of neural plasticity, promoting, for example, the actions of stimulant drugs of abuse such as cocaine. We discovered a surprising opposite role for BDNF in countering responses to chronic morphine exposure. The suppression of BDNF in the ventral tegmental area (VTA) enhanced the ability of morphine to increase dopamine (DA) neuron excitability and promote reward. In contrast, optical stimulation of VTA DA terminals in nucleus accumbens (NAc) completely reversed the suppressive effect of BDNF on morphine reward. Furthermore, we identified numerous genes in the NAc, a major target region of VTA DA neurons, whose regulation by BDNF in the context of chronic morphine exposure mediated this counteractive function. These findings provide insight into the molecular basis of morphine-induced neuroadaptations in the brain's reward circuitry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547365/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547365/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koo, Ja Wook -- Mazei-Robison, Michelle S -- Chaudhury, Dipesh -- Juarez, Barbara -- LaPlant, Quincey -- Ferguson, Deveroux -- Feng, Jian -- Sun, Haosheng -- Scobie, Kimberly N -- Damez-Werno, Diane -- Crumiller, Marshall -- Ohnishi, Yoshinori N -- Ohnishi, Yoko H -- Mouzon, Ezekiell -- Dietz, David M -- Lobo, Mary Kay -- Neve, Rachael L -- Russo, Scott J -- Han, Ming-Hu -- Nestler, Eric J -- K99 MH094405/MH/NIMH NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- R01 DA014133/DA/NIDA NIH HHS/ -- R01 MH092306/MH/NIMH NIH HHS/ -- T32 MH087004/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):124-8. doi: 10.1126/science.1222265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042896" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/genetics/*physiology ; Dopamine/metabolism ; Dopaminergic Neurons/*drug effects/physiology ; Gene Expression Regulation ; Gene Knockdown Techniques ; Gene Knockout Techniques ; Male ; Mice ; Mice, Inbred C57BL ; Morphine/*pharmacology ; Morphine Dependence/genetics/*physiopathology ; Nucleus Accumbens/drug effects/physiopathology ; Photic Stimulation ; Receptor, trkB/genetics/physiology ; Ventral Tegmental Area/*drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...